Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Ranalysis_reg.
Require Import Rfunctions.
Require Import Rseries.
Require Import Lra.
Require Import RiemannInt.
Require Import SeqProp.
Require Import Max.
Require Import Omega.
Require Import Lra.
Local Open Scope R_scope.

Preliminaries lemmas


forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) -> (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> forall x y : R, f lb <= x -> x < y -> y <= f ub -> g x < g y

forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) -> (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> forall x y : R, f lb <= x -> x < y -> y <= f ub -> g x < g y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub

g x < g y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub

g x < g y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub

g x < g y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub

g x < g y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub

g x < g y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub

~ g x < g y -> g x < g y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y

g x < g y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x

g x < g y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x

y <= x
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x

id y <= x
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x

id y <= id x
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x

comp f g y <= id x
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x

comp f g y <= comp f g x
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x

forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
comp f g y <= comp f g x
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x

forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x
m, n:R
lb_le_m:lb <= m
m_le_n:m <= n
n_lt_ub:n < ub

f m <= f n
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x
m, n:R
lb_le_m:lb <= m
m_le_n:m <= n
n_lt_ub:n < ub

m < n -> f m <= f n
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x
m, n:R
lb_le_m:lb <= m
m_le_n:m <= n
n_lt_ub:n < ub
m = n -> f m <= f n
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x
m, n:R
lb_le_m:lb <= m
m_le_n:m <= n
n_lt_ub:n < ub

m < n -> f m <= f n
intros; apply Rlt_le, f_incr, Rlt_le; assumption.
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x
m, n:R
lb_le_m:lb <= m
m_le_n:m <= n
n_lt_ub:n < ub

m = n -> f m <= f n
intros Hyp; rewrite Hyp; apply Req_le; reflexivity.
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
x_encad:f lb <= x <= f ub
y_encad:f lb <= y <= f ub
gx_encad:lb <= g x <= ub
gy_encad:lb <= g y <= ub
Hfalse:~ g x < g y
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0

comp f g y <= comp f g x
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
Hfalse:g x < g y -> False
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
H:f lb <= x
H0:x <= f ub
H1:f lb <= y
H2:y <= f ub
H3:lb <= g x
H4:g x <= ub
H5:lb <= g y
H6:g y <= ub

g x < ub
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
Hfalse:g x < g y -> False
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
H:f lb <= x
H0:x <= f ub
H1:f lb <= y
H2:y <= f ub
H3:lb <= g x
H4:g x <= ub
H5:lb <= g y
H6:g y <= ub

g x <> ub
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
Hfalse:g x < g y -> False
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
H:f lb <= x
H0:x <= f ub
H1:f lb <= y
H2:y <= f ub
H3:lb <= g x
H4:g x <= ub
H5:lb <= g y
H6:g y <= ub
Hf:g x = ub

False
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
Hfalse:g x < g y -> False
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
H:f lb <= x
H0:x <= f ub
H1:f lb <= y
H2:y <= f ub
H3:lb <= g x
H4:g x <= ub
H5:lb <= g y
H6:g y <= ub
Hf:g x = ub

comp f g x = f ub
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
Hfalse:g x < g y -> False
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
H:f lb <= x
H0:x <= f ub
H1:f lb <= y
H2:y <= f ub
H3:lb <= g x
H4:g x <= ub
H5:lb <= g y
H6:g y <= ub
Hf:g x = ub
Htemp:comp f g x = f ub
False
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
Hfalse:g x < g y -> False
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
H:f lb <= x
H0:x <= f ub
H1:f lb <= y
H2:y <= f ub
H3:lb <= g x
H4:g x <= ub
H5:lb <= g y
H6:g y <= ub
Hf:g x = ub

comp f g x = f ub
unfold comp; rewrite Hf; reflexivity.
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
Hfalse:g x < g y -> False
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
H:f lb <= x
H0:x <= f ub
H1:f lb <= y
H2:y <= f ub
H3:lb <= g x
H4:g x <= ub
H5:lb <= g y
H6:g y <= ub
Hf:g x = ub
Htemp:comp f g x = f ub

False
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
Hfalse:g x < g y -> False
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
H:f lb <= x
H0:x <= f ub
H1:f lb <= y
H2:y <= f ub
H3:lb <= g x
H4:g x <= ub
H5:lb <= g y
H6:g y <= ub
Hf:g x = ub
Htemp:id x = f ub

False
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x, y:R
lb_le_x:f lb <= x
x_lt_y:x < y
y_le_ub:y <= f ub
Hfalse:g x < g y -> False
Temp:g y <= g x
f_incr2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 < ub -> f x0 <= f y0
H:f lb <= x
H0:x <= f ub
H1:f lb <= y
H2:y <= f ub
H3:lb <= g x
H4:g x <= ub
H5:lb <= g y
H6:g y <= ub
Hf:g x = ub
Htemp:x = f ub

False
lra. Qed.

forall lb ub x : R, lb <= x <= ub -> derivable_pt id x

forall lb ub x : R, lb <= x <= ub -> derivable_pt id x
lb, ub, x:R
H:lb <= x <= ub

derivable_pt id x
reg. Qed.

forall (f g : R -> R) (lb ub x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), lb < ub -> lb < x < ub -> (forall h : R, lb < h < ub -> f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2

forall (f g : R -> R) (lb ub x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), lb < ub -> lb < x < ub -> (forall h : R, lb < h < ub -> f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h

derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h

forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub

derivable_pt_abs f a l <-> derivable_pt_abs g a l
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub

(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps) <-> (forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps)
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub

(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps0
eps:R
eps_pos:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps

Rmin delta (Rmin (ub - a) (a - lb)) > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
lb, ub, a:R
a_encad:lb < a < ub
delta:posreal

Rmin delta (Rmin (ub - a) (a - lb)) > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0

forall h : R, h <> 0 -> Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |} -> Rabs ((g (a + h) - g a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}

Rabs ((g (a + h) - g a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}

Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
f (a + h) - f a = g (a + h) - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h = 0 -> False
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
H:lb < x
H0:x < ub
H1:lb < a
H2:a < ub

Rabs h < delta
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
f (a + h) - f a = g (a + h) - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h = 0 -> False
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
H:lb < x
H0:x < ub
H1:lb < a
H2:a < ub

Rabs h < Rmin delta (Rmin (ub - a) (a - lb))
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h = 0 -> False
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
H:lb < x
H0:x < ub
H1:lb < a
H2:a < ub
Rmin delta (Rmin (ub - a) (a - lb)) <= delta
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
f (a + h) - f a = g (a + h) - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h = 0 -> False
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
H:lb < x
H0:x < ub
H1:lb < a
H2:a < ub

Rmin delta (Rmin (ub - a) (a - lb)) <= delta
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
f (a + h) - f a = g (a + h) - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}

f (a + h) - f a = g (a + h) - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}

forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
f (a + h) - f a = g (a + h) - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

f (a + h) - f a = g (a + h) - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

g (a + h) + - f a = g (a + h) + - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

g (a + h) + - g a = g (a + h) + - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
lb < a < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

lb < a < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0

m < n
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0

m < Rabs n
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0
Rabs n <= n
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0

Rabs n <= n
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

lb < a + h
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

forall x0 y z : R, - z < y - x0 -> x0 < y + z
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z
lb < a + h
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

lb < a + h
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

- h < a - lb
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

Rabs (- h) < Rabs (a - lb)
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z
a - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

Rabs h < Rabs (a - lb)
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z
a - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

a - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

forall x0 y z : R, y < z - x0 -> x0 + y < z
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z

a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z

h < ub - a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z

Rabs h < Rabs (ub - a)
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z
ub - a > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (a + h0) - f a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z

ub - a > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub

(forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps) -> forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps0
eps:R
eps_pos:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps

Rmin delta (Rmin (ub - a) (a - lb)) > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
lb, ub, a:R
a_encad:lb < a < ub
delta:posreal

Rmin delta (Rmin (ub - a) (a - lb)) > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (a + h) - g a) / h - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (a + h) - g a) / h - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0

forall h : R, h <> 0 -> Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |} -> Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}

Rabs ((f (a + h) - f a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}

Rabs ((g (a + h) - g a) / h - l) < eps
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
g (a + h) - g a = f (a + h) - f a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h = 0 -> False
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
H:lb < x
H0:x < ub
H1:lb < a
H2:a < ub

Rabs h < delta
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
g (a + h) - g a = f (a + h) - f a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h = 0 -> False
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
H:lb < x
H0:x < ub
H1:lb < a
H2:a < ub

Rabs h < Rmin delta (Rmin (ub - a) (a - lb))
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h = 0 -> False
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
H:lb < x
H0:x < ub
H1:lb < a
H2:a < ub
Rmin delta (Rmin (ub - a) (a - lb)) <= delta
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
g (a + h) - g a = f (a + h) - f a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h = 0 -> False
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
H:lb < x
H0:x < ub
H1:lb < a
H2:a < ub

Rmin delta (Rmin (ub - a) (a - lb)) <= delta
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
g (a + h) - g a = f (a + h) - f a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}

g (a + h) - g a = f (a + h) - f a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}

forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
g (a + h) - g a = f (a + h) - f a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

g (a + h) - g a = f (a + h) - f a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

g (a + h) + - g a = g (a + h) + - f a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

g (a + h) + - g a = g (a + h) + - g a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
lb < a < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

lb < a < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0

forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0

m < n
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0

m < Rabs n
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0
Rabs n <= n
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0

Rabs n <= n
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

lb < a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

lb < a + h
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

forall x0 y z : R, - z < y - x0 -> x0 < y + z
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z
lb < a + h
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

lb < a + h
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

- h < a - lb
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

Rabs (- h) < Rabs (a - lb)
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z
a - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

Rabs h < Rabs (a - lb)
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z
a - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, - z < y - x0 -> x0 < y + z

a - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y

forall x0 y z : R, y < z - x0 -> x0 + y < z
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z
a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z

a + h < ub
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z

h < ub - a
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z

Rabs h < Rabs (ub - a)
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z
ub - a > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h0 : R, lb < h0 < ub -> f h0 = g h0
a, l:R
a_encad:lb < a < ub
Hyp:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((g (a + h0) - g a) / h0 - l) < eps0
eps:R
eps_pos:0 < eps
delta:posreal
Hyp2:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((g (a + h0) - g a) / h0 - l) < eps
Pos_cond:Rmin delta (Rmin (ub - a) (a - lb)) > 0
h:R
h_neq:h <> 0
h_encad:Rabs h < {| pos := Rmin delta (Rmin (ub - a) (a - lb)); cond_pos := Pos_cond |}
local_eq2:forall h0 : R, lb < h0 < ub -> - f h0 = - g h0
Sublemma2:forall x0 y : R, Rabs x0 < Rabs y -> y > 0 -> x0 < y
Sublemma:forall x0 y z : R, y < z - x0 -> x0 + y < z

ub - a > 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l
derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f x
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l

derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l

derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x0 l : R, lb < x0 < ub -> derivable_pt_abs f x0 l <-> derivable_pt_abs g x0 l

derive_pt f x Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x1 l : R, lb < x1 < ub -> derivable_pt_abs f x1 l <-> derivable_pt_abs g x1 l
x0:R
p:derivable_pt_abs f x x0

derive_pt f x (exist (fun l : R => derivable_pt_abs f x l) x0 p) = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_abs f x x0
x1:R
p0:derivable_pt_abs g x x1

derive_pt f x (exist (fun l : R => derivable_pt_abs f x l) x0 p) = derive_pt g x (exist (fun l : R => derivable_pt_abs g x l) x1 p0)
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_abs f x x0
x1:R
p0:derivable_pt_abs g x x1
Temp:derivable_pt_abs g x x0

derive_pt f x (exist (fun l : R => derivable_pt_abs f x l) x0 p) = derive_pt g x (exist (fun l : R => derivable_pt_abs g x l) x1 p0)
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_abs f x x0
x1:R
p0:derivable_pt_abs g x x1
Temp:derivable_pt_abs f x x0
lb < x < ub
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_lim f x x0
x1:R
p0:derivable_pt_abs g x x1
Temp:derivable_pt_abs g x x0

derive_pt f x (exist (fun l : R => derivable_pt_abs f x l) x0 p) = derive_pt g x (exist (fun l : R => derivable_pt_abs g x l) x1 p0)
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_abs f x x0
x1:R
p0:derivable_pt_abs g x x1
Temp:derivable_pt_abs f x x0
lb < x < ub
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_lim f x x0
x1:R
p0:derivable_pt_lim g x x1
Temp:derivable_pt_abs g x x0

derive_pt f x (exist (fun l : R => derivable_pt_abs f x l) x0 p) = derive_pt g x (exist (fun l : R => derivable_pt_abs g x l) x1 p0)
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_abs f x x0
x1:R
p0:derivable_pt_abs g x x1
Temp:derivable_pt_abs f x x0
lb < x < ub
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_lim f x x0
x1:R
p0:derivable_pt_lim g x x1
Temp:derivable_pt_abs g x x0

x0 = x1
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_abs f x x0
x1:R
p0:derivable_pt_abs g x x1
Temp:derivable_pt_abs f x x0
lb < x < ub
f, g:R -> R
lb, ub, x:R
Prf:{l : R | derivable_pt_abs f x l}
Prg:{l : R | derivable_pt_abs g x l}
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_eq:forall h : R, lb < h < ub -> f h = g h
H:forall x2 l : R, lb < x2 < ub -> derivable_pt_abs f x2 l <-> derivable_pt_abs g x2 l
x0:R
p:derivable_pt_abs f x x0
x1:R
p0:derivable_pt_abs g x x1
Temp:derivable_pt_abs f x x0

lb < x < ub
assumption. Qed. (* begin hide *)

forall f g : R -> R, (forall x y : R, x < y -> f x < f y) -> (forall x : R, comp f g x = id x) -> forall x : R, comp g f x = id x

forall f g : R -> R, (forall x y : R, x < y -> f x < f y) -> (forall x : R, comp f g x = id x) -> forall x : R, comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R

comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R

forall x0 : R, f (g (f x0)) = f x0
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0

comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0

forall x0 y : R, f x0 = f y -> x0 = y
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b

a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b

{a < b} + {a = b} -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b

a < b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a = b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
Hf:a < b

a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a = b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
Hf:a < b
Hfalse:f a < f b

a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a = b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
Hf:a < b
Hfalse:f a < f b

False
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a = b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b

a = b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b

a > b -> a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
Hf:a > b

a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
Hf:a > b
Hfalse:f b < f a

a = b
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
a, b:R
fa_eq_fb:f a = f b
Hf:a > b
Hfalse:f b < f a

False
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y

comp g f x = id x
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y

f (comp g f x) = f (id x)
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, comp f g x0 = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y

f (g (f x)) = f (id x)
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, f (g x0) = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y

f (g (f x)) = f (id x)
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, f (g x0) = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y

id (f x) = f (id x)
f, g:R -> R
f_incr:forall x0 y : R, x0 < y -> f x0 < f y
Hyp:forall x0 : R, f (g x0) = id x0
x:R
H:forall x0 : R, f (g (f x0)) = f x0
f_inj:forall x0 y : R, f x0 = f y -> x0 = y

f x = f x
reflexivity. Qed. (* end hide *)

forall (f g : R -> R) (lb ub : R), (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y) -> (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> forall x : R, lb <= x <= ub -> comp g f x = id x

forall (f g : R -> R) (lb ub : R), (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y) -> (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> forall x : R, lb <= x <= ub -> comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub

comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub

forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b

a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b

{a < b} + {a = b} -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b

a < b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a = b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
Hf:a < b

a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a = b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
Hf:a < b
Hfalse:f a < f b

a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a = b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
Hf:a < b
Hfalse:f a < f b

False
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a = b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b

a = b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
a > b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b

a > b -> a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
Hf:a > b

a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
Hf:a > b
Hfalse:f b < f a

a = b
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
a, b:R
a_encad:lb <= a <= ub
b_encad:lb <= b <= ub
fa_eq_fb:f a = f b
Hf:a > b
Hfalse:f b < f a

False
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y

comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y

forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub

f m <= f n
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub

m < n -> f m <= f n
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub
m = n -> f m <= f n
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub
cond:m < n

f m <= f n
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub
m = n -> f m <= f n
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub

m = n -> f m <= f n
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y

comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y

forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x1 y : R, lb <= x1 -> x1 < y -> y <= ub -> f x1 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x1 : R, f lb <= x1 -> x1 <= f ub -> lb <= g x1 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x1 y : R, lb <= x1 <= ub -> lb <= y <= ub -> f x1 = f y -> x1 = y
f_incr_interv2:forall x1 y : R, lb <= x1 -> x1 <= y -> y <= ub -> f x1 <= f y
x0:R
H:lb <= x0 <= ub

f lb <= f x0
f, g:R -> R
lb, ub:R
f_incr_interv:forall x1 y : R, lb <= x1 -> x1 < y -> y <= ub -> f x1 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x1 : R, f lb <= x1 -> x1 <= f ub -> lb <= g x1 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x1 y : R, lb <= x1 <= ub -> lb <= y <= ub -> f x1 = f y -> x1 = y
f_incr_interv2:forall x1 y : R, lb <= x1 -> x1 <= y -> y <= ub -> f x1 <= f y
x0:R
H:lb <= x0 <= ub
f x0 <= f ub
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x1 y : R, lb <= x1 -> x1 < y -> y <= ub -> f x1 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x1 : R, f lb <= x1 -> x1 <= f ub -> lb <= g x1 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x1 y : R, lb <= x1 <= ub -> lb <= y <= ub -> f x1 = f y -> x1 = y
f_incr_interv2:forall x1 y : R, lb <= x1 -> x1 <= y -> y <= ub -> f x1 <= f y
x0:R
H:lb <= x0 <= ub

f x0 <= f ub
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0
comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> comp f g y = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0

comp g f x = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> f (g y) = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0

g (f x) = id x
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> f (g y) = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0

lb <= g (f x) <= ub
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> f (g y) = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0
lb <= id x <= ub
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> f (g y) = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0
f (g (f x)) = f (id x)
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> f (g y) = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0

lb <= id x <= ub
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> f (g y) = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0
f (g (f x)) = f (id x)
f, g:R -> R
lb, ub:R
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
Hyp:forall y : R, f lb <= y -> y <= f ub -> f (g y) = id y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
x:R
x_encad:lb <= x <= ub
f_inj:forall x0 y : R, lb <= x0 <= ub -> lb <= y <= ub -> f x0 = f y -> x0 = y
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
Hyp2:forall x0 : R, lb <= x0 <= ub -> f (g (f x0)) = f x0

f (g (f x)) = f (id x)
apply Hyp2 ; unfold id ; assumption. Qed.
Intermediate Value Theorem on an Interval (Proof mainly taken from Reals.Rsqrt_def) and its corollary

forall (x y : R) (P : R -> bool) (N : nat), x < y -> x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

forall (x y : R) (P : R -> bool) (N : nat), x < y -> x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

forall x y lb ub : R, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x + y) / 2 <= ub
Sublemma:forall x y lb ub : R, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x + y) / 2 <= ub
forall (x y : R) (P : R -> bool) (N : nat), x < y -> x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
x, y, lb, ub:R
Hyp:lb <= x <= ub /\ lb <= y <= ub

lb <= (x + y) / 2 <= ub
Sublemma:forall x y lb ub : R, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x + y) / 2 <= ub
forall (x y : R) (P : R -> bool) (N : nat), x < y -> x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
Sublemma:forall x y lb ub : R, lb <= x <= ub /\ lb <= y <= ub -> lb <= (x + y) / 2 <= ub

forall (x y : R) (P : R -> bool) (N : nat), x < y -> x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y

x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
x_lt_y:x < y

x <= Dichotomy_ub x y P 0 <= y /\ x <= Dichotomy_lb x y P 0 <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
x <= Dichotomy_ub x y P (S N) <= y /\ x <= Dichotomy_lb x y P (S N) <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

x <= Dichotomy_ub x y P (S N) <= y /\ x <= Dichotomy_lb x y P (S N) <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

x <= (if P ((Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2) then (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2 else Dichotomy_ub x y P N) <= y /\ x <= (if P ((Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2) then Dichotomy_lb x y P N else (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2) <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

x <= (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2 <= y /\ x <= Dichotomy_lb x y P N <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
x <= Dichotomy_ub x y P N <= y /\ x <= (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2 <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

x <= (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2 <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
x <= Dichotomy_lb x y P N <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
x <= Dichotomy_ub x y P N <= y /\ x <= (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2 <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

x <= Dichotomy_lb x y P N <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
x <= Dichotomy_ub x y P N <= y /\ x <= (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2 <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

x <= Dichotomy_ub x y P N <= y /\ x <= (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2 <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

x <= Dichotomy_ub x y P N <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y
x <= (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2 <= y
Sublemma:forall x0 y0 lb ub : R, lb <= x0 <= ub /\ lb <= y0 <= ub -> lb <= (x0 + y0) / 2 <= ub
x, y:R
P:R -> bool
N:nat
x_lt_y:x < y
IHN:x <= Dichotomy_ub x y P N <= y /\ x <= Dichotomy_lb x y P N <= y

x <= (Dichotomy_lb x y P N + Dichotomy_ub x y P N) / 2 <= y
apply Sublemma ; intuition. Qed.

forall (x y x0 : R) (D : R -> bool), x < y -> Un_cv (dicho_up x y D) x0 -> x <= x0 <= y

forall (x y x0 : R) (D : R -> bool), x < y -> Un_cv (dicho_up x y D) x0 -> x <= x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0

x <= x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0

forall n : nat, x <= dicho_up x y D n <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
x <= x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
n:nat

x <= dicho_up x y D n <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
x <= x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
n:nat

x <= Dichotomy_ub x y D n <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
x <= x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y

x <= x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y

x <= x0
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y

forall n : nat, x <= dicho_up x y D n
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
Un_cv (fun _ : nat => x) x
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
Un_cv (dicho_up x y D) x0
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y

Un_cv (fun _ : nat => x) x
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
Un_cv (dicho_up x y D) x0
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y

Un_cv (dicho_up x y D) x0
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y

x0 <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y

forall n : nat, dicho_up x y D n <= y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
Un_cv (dicho_up x y D) x0
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
Un_cv (fun _ : nat => y) y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y

Un_cv (dicho_up x y D) x0
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y
Un_cv (fun _ : nat => y) y
x, y, x0:R
D:R -> bool
x_lt_y:x < y
bnd:Un_cv (dicho_up x y D) x0
Main:forall n : nat, x <= dicho_up x y D n <= y

Un_cv (fun _ : nat => y) y
unfold Un_cv ; intros ; exists 0%nat ; intros ; unfold R_dist ; replace (y -y) with 0 by field ; rewrite Rabs_R0 ; assumption. Qed.

forall (f : R -> R) (x y : R), (forall a : R, x <= a <= y -> continuity_pt f a) -> x < y -> f x < 0 -> 0 < f y -> {z : R | x <= z <= y /\ f z = 0}

forall (f : R -> R) (x y : R), (forall a : R, x <= a <= y -> continuity_pt f a) -> x < y -> f x < 0 -> 0 < f y -> {z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y

{z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y

x <= y -> {z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y

{z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y

{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l} -> {z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y

{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l} -> {l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l} -> {z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}

{z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0

{z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x1

{z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x1
H4:x1 = x0

{z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

{z : R | x <= z <= y /\ f z = 0}
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

x <= x0 <= y /\ f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

x <= x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

x <= x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

x <= dicho_lb x y (fun z : R => cond_positivity (f z)) 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
dicho_lb x y (fun z : R => cond_positivity (f z)) 0 <= x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

x <= x
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
dicho_lb x y (fun z : R => cond_positivity (f z)) 0 <= x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

dicho_lb x y (fun z : R => cond_positivity (f z)) 0 <= x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

Un_growing (dicho_lb x y (fun z : R => cond_positivity (f z)))
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

x0 <= dicho_up x y (fun z : R => cond_positivity (f z)) 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
dicho_up x y (fun z : R => cond_positivity (f z)) 0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

Un_decreasing (dicho_up x y (fun z : R => cond_positivity (f z)))
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
dicho_up x y (fun z : R => cond_positivity (f z)) 0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
dicho_up x y (fun z : R => cond_positivity (f z)) 0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

dicho_up x y (fun z : R => cond_positivity (f z)) 0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
x <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0

f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R

f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R

f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R

((forall n : nat, f (Vn n) <= 0) -> f x0 <= 0) -> f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R

((forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0) -> ((forall n : nat, f (Vn n) <= 0) -> f x0 <= 0) -> f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0

f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0

(forall n : nat, f (Vn n) <= 0) -> f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0

(forall n : nat, 0 <= f (Wn n)) -> (forall n : nat, f (Vn n) <= 0) -> f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, 0 <= f (Wn n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
H7:forall n : nat, 0 <= f (Wn n)
H8:forall n : nat, f (Vn n) <= 0

f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, 0 <= f (Wn n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
H7:forall n : nat, 0 <= f (Wn n)
H8:forall n : nat, f (Vn n) <= 0
H9:f x0 <= 0

f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, 0 <= f (Wn n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
H7:forall n : nat, 0 <= f (Wn n)
H8:forall n : nat, f (Vn n) <= 0
H9:f x0 <= 0
H10:0 <= f x0

f x0 = 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, 0 <= f (Wn n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0

forall n : nat, 0 <= f (Wn n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat

0 <= f (Wn n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat

0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat

(forall z : R, cond_positivity z = true <-> 0 <= z) -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
forall z : R, cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
H7:forall z : R, cond_positivity z = true <-> 0 <= z

0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
forall z : R, cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
H7:forall z : R, cond_positivity z = true <-> 0 <= z
H8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = true

0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
forall z : R, cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
H7:forall z : R, cond_positivity z = true <-> 0 <= z
H8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = true
H9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true

0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
forall z : R, cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
H7:forall z : R, cond_positivity z = true <-> 0 <= z
H8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = true
H9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true

cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
forall z : R, cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
H7:forall z : R, cond_positivity z = true <-> 0 <= z
H8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = true
H9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true

cond_positivity (f y) = true
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
forall z : R, cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
H7:forall z : R, cond_positivity z = true <-> 0 <= z
H8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = true
H9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true
H11:cond_positivity (f y) = true -> 0 <= f y
H12:0 <= f y -> cond_positivity (f y) = true

cond_positivity (f y) = true
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
forall z : R, cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
H7:forall z : R, cond_positivity z = true <-> 0 <= z
H8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = true
H9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)
H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true
H11:cond_positivity (f y) = true -> 0 <= f y
H12:0 <= f y -> cond_positivity (f y) = true

0 <= f y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
forall z : R, cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat

forall z : R, cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R

cond_positivity z = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R

(if Rle_dec 0 z then true else false) = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
r:0 <= z

true = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
Hnotle:~ 0 <= z
false = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
r:0 <= z

true = true -> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
r:0 <= z
0 <= z -> true = true
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
Hnotle:~ 0 <= z
false = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
r:0 <= z

0 <= z -> true = true
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
Hnotle:~ 0 <= z
false = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
Hnotle:~ 0 <= z

false = true <-> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
Hnotle:~ 0 <= z

false = true -> 0 <= z
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
Hnotle:~ 0 <= z
0 <= z -> false = true
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
Hnotle:~ 0 <= z

0 <= z -> false = true
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
n:nat
z:R
Hnotle:~ 0 <= z
H7:0 <= z

false = true
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0

forall n : nat, f (Vn n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0

forall n : nat, f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0

(forall z : R, cond_positivity z = false <-> z < 0) -> forall n : nat, f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
H7:forall z : R, cond_positivity z = false <-> z < 0
n:nat

f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
H7:forall z : R, cond_positivity z = false <-> z < 0
n:nat
H8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = false

f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
H7:forall z : R, cond_positivity z = false <-> z < 0
n:nat
H8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = false

f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
H7:forall z : R, cond_positivity z = false <-> z < 0
n:nat
H8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = false
H9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0
H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false

f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
H7:forall z : R, cond_positivity z = false <-> z < 0
n:nat
H8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = false
H9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0
H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false

cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
H7:forall z : R, cond_positivity z = false <-> z < 0
n:nat
H8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = false
H9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0
H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false

cond_positivity (f x) = false
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
H7:forall z : R, cond_positivity z = false <-> z < 0
n:nat
H8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = false
H9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0
H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false
H11:cond_positivity (f x) = false -> f x < 0
H12:f x < 0 -> cond_positivity (f x) = false

cond_positivity (f x) = false
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
H7:forall z : R, cond_positivity z = false <-> z < 0
n:nat
H8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = false
H9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0
H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false
H11:cond_positivity (f x) = false -> f x < 0
H12:f x < 0 -> cond_positivity (f x) = false

f x < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0

forall z : R, cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
z:R

cond_positivity z = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
z:R

(if Rle_dec 0 z then true else false) = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
z:R
Hle:0 <= z

true = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
z:R
n:~ 0 <= z
false = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
z:R
Hle:0 <= z

true = false -> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
z:R
Hle:0 <= z
z < 0 -> true = false
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
z:R
n:~ 0 <= z
false = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> R
H5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
z:R
Hle:0 <= z

z < 0 -> true = false
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
z:R
n:~ 0 <= z
false = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
z:R
n:~ 0 <= z

false = false <-> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
z:R
n:~ 0 <= z

false = false -> z < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
z:R
n:~ 0 <= z
z < 0 -> false = false
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) l}
x0:R
p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0
H4:x1 = x0
Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
Wn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> R
H5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0
H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0
z:R
n:~ 0 <= z

z < 0 -> false = false
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R

(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R

Un_cv Wn x0 -> (forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)

x <= x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Wn i)) (f x0)

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Wn i)) (f x0)
Hlt:0 < f x0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Wn i)) (f x0)
0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Wn i)) (f x0)
Hgt:0 > f x0
0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Wn i)) (f x0)

0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Wn i)) (f x0)
Hgt:0 > f x0
0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Wn i)) (f x0)
Hgt:0 > f x0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0

0 < - f x0 -> 0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:f (Wn x2) - f x0 < - f x0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0
f (Wn x2) - f x0 >= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:f (Wn x2) - f x0 < - f x0 + 0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0
f (Wn x2) - f x0 >= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:- f x0 + f (Wn x2) < - f x0 + 0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0
f (Wn x2) - f x0 >= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:- f x0 + f (Wn x2) < - f x0 + 0
H12:f (Wn x2) < 0

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0
f (Wn x2) - f x0 >= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:- f x0 + f (Wn x2) < - f x0 + 0
H12:f (Wn x2) < 0
H13:0 <= f (Wn x2)

0 <= f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0
f (Wn x2) - f x0 >= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0

f (Wn x2) - f x0 >= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0

0 <= f (Wn x2)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
H8:0 < - f x0
x2:nat
H9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0
H10:(x2 >= x2)%nat
H11:Rabs (f (Wn x2) - f x0) < - f x0

0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0
0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Wn x0
H6:forall n : nat, 0 <= f (Wn n)
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < eps
Hgt:0 > f x0

0 < - f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R

Un_cv Wn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R

(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R

Un_cv Vn x0 -> (forall n : nat, f (Vn n) <= 0) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0

x <= x0 <= y
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Hlt:0 < f x0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:- (f (Vn x2) - f x0) < f x0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:- (f (Vn x2) - f x0) < f x0 + 0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 - f (Vn x2) < f x0 + 0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 + - f (Vn x2) < f x0 + 0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 + - f (Vn x2) < f x0 + 0
H11:- f (Vn x2) < 0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 + - f (Vn x2) < f x0 + 0
H11:- f (Vn x2) < 0
H12:f (Vn x2) <= 0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 + - f (Vn x2) < f x0 + 0
H11:- f (Vn x2) < 0
H12:f (Vn x2) <= 0

0 < f (Vn x2) -> f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 + - f (Vn x2) < f x0 + 0
H11:- f (Vn x2) < 0
H12:f (Vn x2) <= 0
0 < f (Vn x2)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 + - f (Vn x2) < f x0 + 0
H11:- f (Vn x2) < 0
H12:f (Vn x2) <= 0
H13:0 < f (Vn x2)

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 + - f (Vn x2) < f x0 + 0
H11:- f (Vn x2) < 0
H12:f (Vn x2) <= 0
0 < f (Vn x2)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 + - f (Vn x2) < f x0 + 0
H11:- f (Vn x2) < 0
H12:f (Vn x2) <= 0

0 < f (Vn x2)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:f x0 + - f (Vn x2) < f x0 + 0
H11:- f (Vn x2) < 0
H12:f (Vn x2) <= 0

0 < - - f (Vn x2)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0

f (Vn x2) - f x0 < 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0

f x0 - f (Vn x2) + (f (Vn x2) - f x0) < f x0 - f (Vn x2) + 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0

0 < f x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0
0 <= - f (Vn x2)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < eps
Hlt:0 < f x0
x2:nat
H8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0
H9:(x2 >= x2)%nat
H10:Rabs (f (Vn x2) - f x0) < f x0

0 <= - f (Vn x2)
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
Heq:0 = f x0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0
f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
H5:Un_cv Vn x0
H6:forall n : nat, f (Vn n) <= 0
Temp:x <= x0 <= y
H7:Un_cv (fun i : nat => f (Vn i)) (f x0)
r:0 > f x0

f x0 <= 0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R
Un_cv Vn x0
f:R -> R
x, y:R
H:forall a : R, x <= a <= y -> continuity_pt f a
H0:x < y
H1:f x < 0
H2:0 < f y
H3:x <= y
X:{l : R | Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) l}
X0:{l : R | Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) l}
x0:R
p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0
x1:R
p0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0
H4:x1 = x0
Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> R
Wn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R

Un_cv Vn x0
unfold Vn in |- *; assumption. Qed. (* begin hide *) Ltac case_le H := let t := type of H in let h' := fresh in match t with ?x <= ?y => case (total_order_T x y); [intros h'; case h'; clear h' | intros h'; clear -H h'; elimtype False; lra ] end. (* end hide *)

forall (f : R -> R) (lb ub y : R), lb < ub -> f lb <= y <= f ub -> (forall x : R, lb <= x <= ub -> continuity_pt f x) -> {x : R | lb <= x <= ub /\ f x = y}

forall (f : R -> R) (lb ub y : R), lb < ub -> f lb <= y <= f ub -> (forall x : R, lb <= x <= ub -> continuity_pt f x) -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x

{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y

y <= f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub

y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y_encad4:y < f ub

{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub

{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub

forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub

continuity_pt (fun x : R => f x - y) a
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub

forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alp -> Rabs (f x - y - (f a - y)) < eps)
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0

exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alp -> Rabs (f x - y - (f a - y)) < eps)
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0

forall x : R, x > 0 /\ (forall x0 : Base R_met, D_x no_cond a x0 /\ dist R_met x0 a < x -> dist R_met (f x0) (f a) < eps) -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond a x0 /\ Rabs (x0 - a) < alp -> Rabs (f x0 - y - (f a - y)) < eps)
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0
alpha:R
alpha_pos:alpha > 0 /\ (forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (f x) (f a) < eps)

exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alp -> Rabs (f x - y - (f a - y)) < eps)
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0
alpha:R
alpha_pos:alpha > 0
Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (f x) (f a) < eps

exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alp -> Rabs (f x - y - (f a - y)) < eps)
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0
alpha:R
alpha_pos:alpha > 0
Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (f x) (f a) < eps

alpha > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alpha -> Rabs (f x - y - (f a - y)) < eps)
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0
alpha:R
alpha_pos:alpha > 0
Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (f x) (f a) < eps

alpha > 0
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0
alpha:R
alpha_pos:alpha > 0
Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (f x) (f a) < eps
forall x : R, D_x no_cond a x /\ Rabs (x - a) < alpha -> Rabs (f x - y - (f a - y)) < eps
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0
alpha:R
alpha_pos:alpha > 0
Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (f x) (f a) < eps

forall x : R, D_x no_cond a x /\ Rabs (x - a) < alpha -> Rabs (f x - y - (f a - y)) < eps
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x0 : R, lb <= x0 <= ub -> continuity_pt f x0
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0
alpha:R
alpha_pos:alpha > 0
Temp:forall x0 : Base R_met, D_x no_cond a x0 /\ dist R_met x0 a < alpha -> dist R_met (f x0) (f a) < eps
x:R
x_cond:D_x no_cond a x /\ Rabs (x - a) < alpha

Rabs (f x - y - (f a - y)) < eps
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x0 : R, lb <= x0 <= ub -> continuity_pt f x0
y_encad2:f lb < y
y_encad4:y < f ub
a:R
a_encad:lb <= a <= ub
eps:R
eps_pos:eps > 0
alpha:R
alpha_pos:alpha > 0
Temp:forall x0 : Base R_met, D_x no_cond a x0 /\ dist R_met x0 a < alpha -> dist R_met (f x0) (f a) < eps
x:R
x_cond:D_x no_cond a x /\ Rabs (x - a) < alpha

Rabs (f x - f a) < eps
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a

{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a

f lb - y < 0
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
H1:(fun x : R => f x - y) lb < 0
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a

f lb < y
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
H1:(fun x : R => f x - y) lb < 0
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
H1:(fun x : R => f x - y) lb < 0

{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
H1:(fun x : R => f x - y) lb < 0

0 < f ub - y
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
H1:(fun x : R => f x - y) lb < 0
H2:0 < (fun x : R => f x - y) ub
{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => f x - y) a
H1:(fun x : R => f x - y) lb < 0
H2:0 < (fun x : R => f x - y) ub

{x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x0 : R, lb <= x0 <= ub -> continuity_pt f x0
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => f x0 - y) a
H1:(fun x0 : R => f x0 - y) lb < 0
H2:0 < (fun x0 : R => f x0 - y) ub
x:R
Hx:lb <= x <= ub /\ f x - y = 0

{x0 : R | lb <= x0 <= ub /\ f x0 = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x0 : R, lb <= x0 <= ub -> continuity_pt f x0
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => f x0 - y) a
H1:(fun x0 : R => f x0 - y) lb < 0
H2:0 < (fun x0 : R => f x0 - y) ub
x:R
Hx:lb <= x <= ub /\ f x - y = 0

lb <= x <= ub /\ f x = y
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
f_cont_interv:forall x0 : R, lb <= x0 <= ub -> continuity_pt f x0
y_encad2:f lb < y
y_encad4:y < f ub
Cont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => f x0 - y) a
H1:(fun x0 : R => f x0 - y) lb < 0
H2:0 < (fun x0 : R => f x0 - y) ub
x:R
Hyp:lb <= x <= ub
Result:f x - y = 0

lb <= x <= ub /\ f x = y
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb < y
y_encad3:y <= f ub

y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub

y < f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub
y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
f:R -> R
lb, ub, y:R
lb_lt_ub:lb < ub
y_encad:f lb <= y <= f ub
f_cont_interv:forall x : R, lb <= x <= ub -> continuity_pt f x
y_encad1:f lb <= y
y_encad2:f lb = y
y_encad3:y <= f ub

y = f ub -> {x : R | lb <= x <= ub /\ f x = y}
intro H ; exists ub ; intuition. Qed.

The derivative of a reciprocal function

Continuity of the reciprocal function


forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b

forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b

forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R

Rmax x y < z <-> x < z /\ y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R

Rmax x y < z -> x < z /\ y < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R

(if Rle_dec x y then y else x) < z -> x < z /\ y < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:x <= y
Hyp2:y < z

x < z /\ y < z
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
x < z /\ y < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:x <= y
Hyp2:y < z

x < z
x, y, z:R
Hyp:x <= y
Hyp2:y < z
y < z
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
x < z /\ y < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:x <= y
Hyp2:y < z

y < z
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
x < z /\ y < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z

x < z /\ y < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z

x < z
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
y < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z

y < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z

y < x
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
x < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z

forall x0 y0 : R, ~ x0 <= y0 -> x0 > y0
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
Temp:forall x0 y0 : R, ~ x0 <= y0 -> x0 > y0
y < x
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
x < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
m, n:R
Hypmn:~ m <= n

m > n
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
Temp:forall x0 y0 : R, ~ x0 <= y0 -> x0 > y0
y < x
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
x < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
Temp:forall x0 y0 : R, ~ x0 <= y0 -> x0 > y0

y < x
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z
x < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:~ x <= y
Hyp2:x < z

x < z
x, y, z:R
x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R

x < z /\ y < z -> Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:x < z /\ y < z

Rmax x y < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:x < z /\ y < z

(if Rle_dec x y then y else x) < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:x < z /\ y < z

x <= y -> y < z
x, y, z:R
Hyp:x < z /\ y < z
~ x <= y -> x < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
x, y, z:R
Hyp:x < z /\ y < z

~ x <= y -> x < z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z

forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z

forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R

Rmin x y > z <-> x > z /\ y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R

Rmin x y > z -> x > z /\ y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R

(if Rle_dec x y then x else y) > z -> x > z /\ y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:x <= y
Hyp2:x > z

x > z /\ y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
x > z /\ y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:x <= y
Hyp2:x > z

x > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:x <= y
Hyp2:x > z
y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
x > z /\ y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:x <= y
Hyp2:x > z

y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
x > z /\ y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z

x > z /\ y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z

x > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z

z < y
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
y < x
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z

y < x
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z

forall x0 y0 : R, ~ x0 <= y0 -> x0 > y0
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
Temp:forall x0 y0 : R, ~ x0 <= y0 -> x0 > y0
y < x
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
m, n:R
Hypmn:~ m <= n

m > n
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
Temp:forall x0 y0 : R, ~ x0 <= y0 -> x0 > y0
y < x
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
Temp:forall x0 y0 : R, ~ x0 <= y0 -> x0 > y0

y < x
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z
y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:~ x <= y
Hyp2:y > z

y > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R

x > z /\ y > z -> Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:x > z /\ y > z

Rmin x y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:x > z /\ y > z

(if Rle_dec x y then x else y) > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:x > z /\ y > z

x <= y -> x > z
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:x > z /\ y > z
~ x <= y -> y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x0 y0 z0 : R, Rmax x0 y0 < z0 <-> x0 < z0 /\ y0 < z0
x, y, z:R
Hyp:x > z /\ y > z

~ x <= y -> y > z
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z

forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z

forall x y : R, x <= y /\ x <> y -> x < y
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
m, n:R
Hyp:m <= n /\ m <> n

m < n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
m, n:R
Hyp:(m < n \/ m = n) /\ m <> n

m < n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
m, n:R
Hyp1:m < n \/ m = n
Hyp2:m <> n

m < n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
m, n:R
Hyp1:m < n \/ m = n
Hyp2:m <> n

m < n -> m < n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
m, n:R
Hyp1:m < n \/ m = n
Hyp2:m <> n
m = n -> m < n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
m, n:R
Hyp1:m < n \/ m = n
Hyp2:m <> n

m = n -> m < n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y

forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, lb <= x <= ub -> comp g f x = id x) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub

continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub

forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y
continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub

f m <= f n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y
continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub

m < n -> f m <= f n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub
m = n -> f m <= f n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y
continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub
cond:m < n

f m <= f n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub
m = n -> f m <= f n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y
continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
m, n:R
cond1:lb <= m
cond2:m <= n
cond3:n <= ub

m = n -> f m <= f n
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y
continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y

continuity_pt g b
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y
eps:R
eps_pos:eps > 0

exists alp : R, alp > 0 /\ (forall x : Base R_met, D_x no_cond b x /\ dist R_met x b < alp -> dist R_met (g x) (g b) < eps)
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y
eps:R
eps_pos:eps > 0

exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond b x /\ Rabs (x - b) < alp -> Rabs (g x - g b) < eps)
Sublemma:forall x y z : R, Rmax x y < z <-> x < z /\ y < z
Sublemma2:forall x y z : R, Rmin x y > z <-> x > z /\ y > z
Sublemma3:forall x y : R, x <= y /\ x <> y -> x < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, lb <= x <= ub -> comp g f x = id x
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x y : R, lb <= x -> x <= y -> y <= ub -> f x <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub

exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond b x /\ Rabs (x - b) < alp -> Rabs (g x - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
Temp:lb <= x <= ub /\ f x = b

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b

lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b

x <> lb
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Hfalse:x = lb

False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Hfalse:x = lb

b = f lb
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Hfalse:x = lb
Temp':b = f lb
False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Hfalse:x = lb
Temp':b = f lb

False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Hfalse:x = lb
Temp':b = f lb

b <> f lb
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Hfalse:x = lb
Temp':b = f lb
Temp'':b <> f lb
False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Hfalse:x = lb
Temp':b = f lb
Temp'':b <> f lb

False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb

lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb

lb <= x /\ lb <> x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb

lb <= x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
lb <> x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb

lb <> x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb

forall x0 y : R, x0 <> y <-> y <> x0
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
Temp2:forall x0 y : R, x0 <> y <-> y <> x0
lb <> x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
m, n:R

m <> n <-> n <> m
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
Temp2:forall x0 y : R, x0 <> y <-> y <> x0
lb <> x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
Temp:x <> lb
Temp2:forall x0 y : R, x0 <> y <-> y <> x0

lb <> x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x

x < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x

x <> ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Temp:x <> ub
x < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Hfalse:x = ub

False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Temp:x <> ub
x < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Hfalse:x = ub

b = f ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Hfalse:x = ub
Temp':b = f ub
False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Temp:x <> ub
x < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Hfalse:x = ub
Temp':b = f ub

False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Temp:x <> ub
x < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Hfalse:x = ub
Temp':b = f ub

b <> f ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Hfalse:x = ub
Temp':b = f ub
Temp'':b <> f ub
False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Temp:x <> ub
x < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Hfalse:x = ub
Temp':b = f ub
Temp'':b <> f ub

False
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Temp:x <> ub
x < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Temp:x <> ub

x < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
Temp:x <> ub

x <= ub /\ x <> ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub

lb <= x1 <= ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub

lb <= x1
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1 <= ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub

x1 <= ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub

x1 < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub

Rmax (x - eps) lb < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub

x - eps < ub /\ lb < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub

x - eps < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
lb < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub

lb < ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub

lb <= x2 <= ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub

lb <= x2
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2 <= ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub

x + eps > lb /\ ub > lb
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2 <= ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub

x + eps > lb
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
ub > lb
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2 <= ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub

ub > lb
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2 <= ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub

x2 <= ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub

x < x2
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub

x < Rmin (x + eps) ub
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub

Rmin (x + eps) ub > x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub

x + eps > x /\ ub > x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2

x1 < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2

Rmax (x - eps) lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2

x - eps < x /\ lb < x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < alp -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x

Rmin (f x - f x1) (f x2 - f x) > 0 /\ (forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < Rmin (f x - f x1) (f x2 - f x) -> Rabs (g x0 - g b) < eps)
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x

Rmin (f x - f x1) (f x2 - f x) > 0
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < Rmin (f x - f x1) (f x2 - f x) -> Rabs (g x0 - g b) < eps
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x

f x > f x1
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
f x2 > f x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < Rmin (f x - f x1) (f x2 - f x) -> Rabs (g x0 - g b) < eps
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x

f x2 > f x
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < Rmin (f x - f x1) (f x2 - f x) -> Rabs (g x0 - g b) < eps
Sublemma:forall x0 y z : R, Rmax x0 y < z <-> x0 < z /\ y < z
Sublemma2:forall x0 y z : R, Rmin x0 y > z <-> x0 > z /\ y > z
Sublemma3:forall x0 y : R, x0 <= y /\ x0 <> y -> x0 < y
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y : R, lb <= x0 -> x0 <= y -> y <= ub -> f x0 <= f y
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x

forall x0 : R, D_x no_cond b x0 /\ Rabs (x0 - b) < Rmin (f x - f x1) (f x2 - f x) -> Rabs (g x0 - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
Temp:D_x no_cond b y /\ Rabs (y - b) < Rmin (f x - f x1) (f x2 - f x)

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - b) < Rmin (f x - f x1) (f x2 - f x)

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)

forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2

x0 - d1 <= y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2

x0 - d1 <= y0
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2

forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
x0 - d1 <= y0
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x4 y2 z0 : R, Rmax x4 y2 < z0 <-> x4 < z0 /\ y2 < z0
Sublemma2:forall x4 y2 z0 : R, Rmin x4 y2 > z0 <-> x4 > z0 /\ y2 > z0
Sublemma3:forall x4 y2 : R, x4 <= y2 /\ (x4 = y2 -> False) -> x4 < y2
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x4 y2 : R, lb <= x4 -> x4 < y2 -> y2 <= ub -> f x4 < f y2
f_eq_g:forall x4 : R, lb <= x4 <= ub -> comp g f x4 = id x4
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
f_incr_interv2:forall x4 y2 : R, lb <= x4 -> x4 <= y2 -> y2 <= ub -> f x4 <= f y2
eps:R
eps_pos:eps > 0
x:R
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H2:f lb < b
H3:b < f ub
H4:f lb <= b
H5:b <= f ub
H6:lb <= x
H7:x <= ub
H8:lb <= x1
H9:x1 <= ub
H10:lb <= x2
H11:x2 <= ub
x3, y1, z:R
H12:x3 - y1 <= z

x3 - z <= y1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
x0 - d1 <= y0
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

x0 - d1 <= y0
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

x0 - y0 <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

x0 - y0 <= Rabs (y0 - x0)
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
Rabs (y0 - x0) <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

x0 - y0 <= Rabs (x0 - y0)
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
Rabs (x0 - y0) = Rabs (y0 - x0)
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
Rabs (y0 - x0) <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

Rabs (x0 - y0) = Rabs (y0 - x0)
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
Rabs (y0 - x0) <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

Rabs (- (x0 - y0)) = Rabs (y0 - x0)
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
Rabs (y0 - x0) <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

Rabs (- x0 + - - y0) = Rabs (y0 + - x0)
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
Rabs (y0 - x0) <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

Rabs (- x0 + y0) = Rabs (y0 + - x0)
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
Rabs (y0 - x0) <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

Rabs (y0 - x0) <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

Rabs (y0 - x0) <= Rmin d1 d2
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1
Rmin d1 d2 <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 - z <= y1

Rmin d1 d2 <= d1
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2

y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2

forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x4 y2 z0 : R, Rmax x4 y2 < z0 <-> x4 < z0 /\ y2 < z0
Sublemma2:forall x4 y2 z0 : R, Rmin x4 y2 > z0 <-> x4 > z0 /\ y2 > z0
Sublemma3:forall x4 y2 : R, x4 <= y2 /\ (x4 = y2 -> False) -> x4 < y2
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x4 y2 : R, lb <= x4 -> x4 < y2 -> y2 <= ub -> f x4 < f y2
f_eq_g:forall x4 : R, lb <= x4 <= ub -> comp g f x4 = id x4
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
f_incr_interv2:forall x4 y2 : R, lb <= x4 -> x4 <= y2 -> y2 <= ub -> f x4 <= f y2
eps:R
eps_pos:eps > 0
x:R
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H2:f lb < b
H3:b < f ub
H4:f lb <= b
H5:b <= f ub
H6:lb <= x
H7:x <= ub
H8:lb <= x1
H9:x1 <= ub
H10:lb <= x2
H11:x2 <= ub
x3, y1, z:R
H12:x3 - y1 <= z

x3 <= y1 + z
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z
y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z

y0 <= x0 + d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z

y0 - x0 <= d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z

y0 - x0 <= Rabs (y0 - x0)
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z
Rabs (y0 - x0) <= d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z

Rabs (y0 - x0) <= d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z

Rabs (y0 - x0) <= Rmin d1 d2
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z
Rmin d1 d2 <= d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x3 y1 z : R, Rmax x3 y1 < z <-> x3 < z /\ y1 < z
Sublemma2:forall x3 y1 z : R, Rmin x3 y1 > z <-> x3 > z /\ y1 > z
Sublemma3:forall x3 y1 : R, x3 <= y1 /\ x3 <> y1 -> x3 < y1
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x3 y1 : R, lb <= x3 -> x3 < y1 -> y1 <= ub -> f x3 < f y1
f_eq_g:forall x3 : R, lb <= x3 <= ub -> comp g f x3 = id x3
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x3 y1 : R, lb <= x3 -> x3 <= y1 -> y1 <= ub -> f x3 <= f y1
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
x0, y0, d1, d2:R
H:d1 > 0
H0:d2 > 0
H1:Rabs (y0 - x0) < Rmin d1 d2
H10:forall x3 y1 z : R, x3 - y1 <= z -> x3 <= y1 + z

Rmin d1 d2 <= d2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x - (f x - f x1) <= y <= f x + (f x2 - f x)

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x + (f x2 - f x)

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2

f x - f x1 > 0
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2
T:f x - f x1 > 0
Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2

f x > f x1
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2
T:f x - f x1 > 0
Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2
T:f x - f x1 > 0

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2
T:f x - f x1 > 0

f x2 - f x > 0
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2
T:f x - f x1 > 0
T':f x2 - f x > 0
Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2
T:f x - f x1 > 0

f x2 > f x
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2
T:f x - f x1 > 0
T':f x2 - f x > 0
Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2
T:f x - f x1 > 0
T':f x2 - f x > 0

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Temp:forall x0 y0 d1 d2 : R, d1 > 0 -> d2 > 0 -> Rabs (y0 - x0) < Rmin d1 d2 -> x0 - d1 <= y0 <= x0 + d2
Temp':f x - f x1 > 0 -> f x2 - f x > 0 -> Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x) -> f x1 <= y <= f x2
T:f x - f x1 > 0
T':f x2 - f x > 0
Main:f x1 <= y <= f x2

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2

x1 < x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2

forall a : R, x1 <= a <= x2 -> continuity_pt f a
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a0 : R, lb <= a0 <= ub -> continuity_pt f a0
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
a:R
H:x1 <= a <= x2

lb <= a
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a0 : R, lb <= a0 <= ub -> continuity_pt f a0
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
a:R
H:x1 <= a <= x2
a <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a0 : R, lb <= a0 <= ub -> continuity_pt f a0
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
a:R
H:x1 <= a <= x2

a <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
Temp:x1 <= x' <= x2 /\ f x' = y

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

Rabs (g y - g b) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

Rabs (g (f x') - g (f x)) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

Rabs (g (f x') - g (f x)) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

Rabs (id x' - g (f x)) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

Rabs (id x' - id x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

x - eps <= x' <= x + eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

x - eps <= x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x' <= x + eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

x' <= x + eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps

Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps

x1 < x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps

x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps

x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'

False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'

False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'

Rabs (y - f x) < f x - y
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'

Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Rmin (f x - y) (f x2 - f x) <= f x - y
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'

Rmin (f x - y) (f x2 - f x) <= f x - y
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y

False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y

f x - y < f x - y
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Hfin:f x - y < f x - y
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y

f x - y <= Rabs (y - f x)
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Rabs (y - f x) < f x - y
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Hfin:f x - y < f x - y
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y

f x - y <= Rabs (f x - y)
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Rabs (f x - y) = Rabs (y - f x)
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Rabs (y - f x) < f x - y
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Hfin:f x - y < f x - y
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y

Rabs (f x - y) = Rabs (y - f x)
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Rabs (y - f x) < f x - y
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Hfin:f x - y < f x - y
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y

Rabs (- (f x - y)) = Rabs (y - f x)
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Rabs (y - f x) < f x - y
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Hfin:f x - y < f x - y
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y

Rabs (y - f x) < f x - y
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Hfin:f x - y < f x - y
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - y) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
Hfalse:x1 = x'
Hf:Rabs (y - f x) < f x - y
Hfin:f x - y < f x - y

False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'
x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_neq_x':x1 <> x'

x1 <= x' /\ x1 <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'

Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'

x - eps < x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'

x - eps <= x' /\ x - eps <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'

x - eps <= x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x - eps <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'

x - eps <> x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'

x - eps < x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'

Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'

x' < x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'

x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'

x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2

False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2

False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2

Rabs (y - f x) < y - f x
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2

Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Rmin (f x - f x1) (y - f x) <= y - f x
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2

Rmin (f x - f x1) (y - f x) <= y - f x
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x

False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x

y - f x < y - f x
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x
Hfin:y - f x < y - f x
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x

y - f x <= Rabs (y - f x)
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x
Rabs (y - f x) < y - f x
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x
Hfin:y - f x < y - f x
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x

Rabs (y - f x) < y - f x
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x
Hfin:y - f x < y - f x
False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y, x':R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (y - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
Hfalse:x' = x2
Hf:Rabs (y - f x) < y - f x
Hfin:y - f x < y - f x

False
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2
x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x1_neq_x':x' <> x2

x' <= x2 /\ x' <> x2
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2

Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2

x' < x + eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
x'_ub:x' < x + eps
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2

x' <= x + eps /\ x' <> x + eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
x'_ub:x' < x + eps
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2

x' <= x + eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
x' <> x + eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
x'_ub:x' < x + eps
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2

x' <> x + eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
x'_ub:x' < x + eps
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2

x' < x + eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
x'_ub:x' < x + eps
Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x'_encad2:x - eps <= x' <= x + eps
x1_lt_x':x1 < x'
x'_lb:x - eps < x'
x'_lt_x2:x' < x2
x'_ub:x' < x + eps

Rabs (x' - x) < eps
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

lb <= x <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

lb <= x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

lb <= x'
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y
x' <= ub
Sublemma:forall x0 y0 z : R, Rmax x0 y0 < z <-> x0 < z /\ y0 < z
Sublemma2:forall x0 y0 z : R, Rmin x0 y0 > z <-> x0 > z /\ y0 > z
Sublemma3:forall x0 y0 : R, x0 <= y0 /\ x0 <> y0 -> x0 < y0
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x0 y0 : R, lb <= x0 -> x0 < y0 -> y0 <= ub -> f x0 < f y0
f_eq_g:forall x0 : R, lb <= x0 <= ub -> g (f x0) = id x0
f_cont_interv:forall a : R, lb <= a <= ub -> continuity_pt f a
b:R
b_encad:f lb < b < f ub
f_incr_interv2:forall x0 y0 : R, lb <= x0 -> x0 <= y0 -> y0 <= ub -> f x0 <= f y0
eps:R
eps_pos:eps > 0
b_encad_e:f lb <= b <= f ub
x:R
x_encad:lb <= x <= ub
f_x_b:f x = b
lb_lt_x:lb < x
x_lt_ub:x < ub
x1:=Rmax (x - eps) lb:R
x2:=Rmin (x + eps) ub:R
Hx1:x1 = Rmax (x - eps) lb
Hx2:x2 = Rmin (x + eps) ub
x1_encad:lb <= x1 <= ub
x2_encad:lb <= x2 <= ub
x_lt_x2:x < x2
x1_lt_x:x1 < x
y:R
y_cond:Rabs (y - f x) < Rmin (f x - f x1) (f x2 - f x)
Main:f x1 <= y <= f x2
x1_lt_x2:x1 < x2
f_cont_myinterv:forall a : R, x1 <= a <= x2 -> continuity_pt f a
x':R
x'_encad:x1 <= x' <= x2
f_x'_y:f x' = y

x' <= ub
apply Rle_trans with (r2:=x2) ; intuition. Qed.

forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) -> (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b

forall (f g : R -> R) (lb ub : R), lb < ub -> (forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y) -> (forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x) -> (forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> (forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x
g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub

(forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x
g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub
g_eq_f_prelim:(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> forall x : R, lb <= x <= ub -> comp g f x = id x

(forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x
g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub
g_eq_f_prelim:(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> forall x : R, lb <= x <= ub -> comp g f x = id x

forall x : R, lb <= x <= ub -> comp g f x = id x
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x
g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub
g_eq_f_prelim:(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> forall x : R, lb <= x <= ub -> comp g f x = id x
g_eq_f:forall x : R, lb <= x <= ub -> comp g f x = id x
(forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
f, g:R -> R
lb, ub:R
lb_lt_ub:lb < ub
f_incr_interv:forall x y : R, lb <= x -> x < y -> y <= ub -> f x < f y
f_eq_g:forall x : R, f lb <= x -> x <= f ub -> comp f g x = id x
g_wf:forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub
g_eq_f_prelim:(forall x : R, f lb <= x -> x <= f ub -> lb <= g x <= ub) -> forall x : R, lb <= x <= ub -> comp g f x = id x
g_eq_f:forall x : R, lb <= x <= ub -> comp g f x = id x

(forall a : R, lb <= a <= ub -> continuity_pt f a) -> forall b : R, f lb < b < f ub -> continuity_pt g b
apply (continuity_pt_recip_prelim f g lb ub lb_lt_ub f_incr_interv g_eq_f). Qed.

Derivability of the reciprocal function


forall (f g : R -> R) (lb ub x : R) (Prf : forall a : R, g lb <= a <= g ub -> derivable_pt f a), continuity_pt g x -> lb < ub -> lb < x < ub -> forall Prg_incr : g lb <= g x <= g ub, (forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0) -> derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 -> derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr))

forall (f g : R -> R) (lb ub x : R) (Prf : forall a : R, g lb <= a <= g ub -> derivable_pt f a), continuity_pt g x -> lb < ub -> lb < x < ub -> forall Prg_incr : g lb <= g x <= g ub, (forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0) -> derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 -> derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr))
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0

derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr))
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0

lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr))
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub

derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr))
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l

derivable_pt_lim g x (1 / l)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l

forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0

forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
eps0:R
eps0_pos:0 < eps0

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
eps0:R
eps0_pos:0 < eps0

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
eps0:R
eps0_pos:0 < eps0

forall x0 : posreal, (forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
eps0:R
eps0_pos:0 < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0

forall x0 : posreal, (forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> limit1_in (fun x1 : R => / f0 x1) D (/ l0) x0
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':limit1_in (fun h : R => (f (y + h) - f y) / h) (fun h : R => h <> 0) l 0 -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, (fun h : R => h <> 0) x0 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x0 0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ (fun h : R => (f (y + h) - f y) / h) x0) (/ l) < eps0)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ R_dist x0 0 < alp -> R_dist ((f (y + x0) - f y) / x0) l < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ R_dist x0 0 < alp -> R_dist (/ ((f (y + x0) - f y) / x0)) (/ l) < eps0)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)

forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0

exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0

forall x0 : posreal, (forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0) -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f (y + x1) - f y) / x1 - l) < eps0)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0

exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0

deltatemp' > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < deltatemp' -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0

deltatemp' > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < deltatemp' -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0

forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < deltatemp' -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
htemp:R
cond:htemp <> 0 /\ Rabs (htemp - 0) < deltatemp'

Rabs ((f (y + htemp) - f y) / htemp - l) < eps0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
htemp:R
cond:htemp <> 0 /\ Rabs (htemp - 0) < deltatemp'

htemp <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
htemp:R
cond:htemp <> 0 /\ Rabs (htemp - 0) < deltatemp'
Rabs htemp < deltatemp'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
htemp:R
cond:htemp <> 0 /\ Rabs (htemp - 0) < deltatemp'

Rabs htemp < deltatemp'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
htemp:R
cond:htemp <> 0 /\ Rabs (htemp - 0) < deltatemp'

Rabs (htemp - 0) < deltatemp'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
htemp:R
cond:htemp <> 0 /\ Rabs (htemp - 0) < deltatemp'
htemp - 0 = htemp
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps1)
Hf_deriv:forall eps1 : R, 0 < eps1 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps1
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps1)) -> l <> 0 -> forall eps1 : R, eps1 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps1)
eps0:R
eps0_pos:eps0 > 0
deltatemp':posreal
Htemp':forall h : R, h <> 0 -> Rabs h < deltatemp' -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
htemp:R
cond:htemp <> 0 /\ Rabs (htemp - 0) < deltatemp'

htemp - 0 = htemp
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)

l <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
l_null:l = 0

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) 0
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
l_null:l = 0

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) 0
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
l_null:l = 0

derive_pt f (g x) (Prf (g x) Prg_incr) = 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) 0
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
l_null:l = 0

derivable_pt_lim f (g x) 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0

forall x0 : R, x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (/ ((f (y + x1) - f y) / x1) - / l) < eps) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
cond:alpha > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps

forall x0 : posreal, (forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:continuity_pt g x

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R

mydelta > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R

(if Rle_dec delta alpha then delta else alpha) > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R

delta <= alpha -> delta > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R
~ delta <= alpha -> alpha > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R

~ delta <= alpha -> alpha > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0

forall x0 : R, x0 > 0 /\ (forall x1 : Base R_met, D_x no_cond x x1 /\ dist R_met x1 x < x0 -> dist R_met (g x1) (g x) < mydelta) -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
new_g_cont:delta' > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta)

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
g_cont:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
new_g_cont:delta' > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta)
delta'_pos:delta' > 0

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R

mydelta'' > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R

Rmin delta' (Rmin (x - lb) (ub - x)) > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (a + h) - f a) / h - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps0
deltatemp:posreal
Htemp:forall h : R, h <> 0 -> Rabs h < deltatemp -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h : R => h <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (g x + h) - f (g x)) / h - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal

forall h : R, h <> 0 -> Rabs h < delta'' -> Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''

Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''

forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m0 return (Base m0 -> Base m0 -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m0 return (Base m0 -> Base m0 -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0

m < n
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m0 return (Base m0 -> Base m0 -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m0 return (Base m0 -> Base m0 -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0

m < Rabs n
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m0 return (Base m0 -> Base m0 -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m0 return (Base m0 -> Base m0 -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0
Rabs n <= n
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m0 return (Base m0 -> Base m0 -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m0 return (Base m0 -> Base m0 -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
m, n:R
Hyp_abs:Rabs m < Rabs n
y_pos:n > 0

Rabs n <= n
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0

lb <= x + h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0

forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
lb <= x + h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

lb <= x + h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

- h <= x - lb
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

Rabs (- h) < Rabs (x - lb)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

Rabs h < Rabs (x - lb)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

Rabs h < Rmin delta' (Rmin (x - lb) (ub - x))
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
Rmin delta' (Rmin (x - lb) (ub - x)) <= Rmin (x - lb) (ub - x)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

Rabs h < delta''
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
delta'' <= Rmin delta' (Rmin (x - lb) (ub - x))
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
Rmin delta' (Rmin (x - lb) (ub - x)) <= Rmin (x - lb) (ub - x)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

delta'' <= Rmin delta' (Rmin (x - lb) (ub - x))
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
Rmin delta' (Rmin (x - lb) (ub - x)) <= Rmin (x - lb) (ub - x)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

Rmin delta' (Rmin (x - lb) (ub - x)) <= Rmin (x - lb) (ub - x)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

x > lb
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0

x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0

forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z
x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

h <= ub - x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

Rabs h < Rabs (ub - x)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z
ub - x > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

ub - x > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

0 < delta''
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z
delta'' <= ub - x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

delta'' <= ub - x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

delta'' <= Rmin delta' (Rmin (x - lb) (ub - x))
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z
Rmin delta' (Rmin (x - lb) (ub - x)) <= ub - x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

Rmin delta' (Rmin (x - lb) (ub - x)) <= ub - x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

Rmin delta' (Rmin (x - lb) (ub - x)) <= Rmin (x - lb) (ub - x)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z
Rmin (x - lb) (ub - x) <= ub - x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
Sublemma:forall x0 y0 z : R, y0 <= z - x0 -> x0 + y0 <= z

Rmin (x - lb) (ub - x) <= ub - x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

h = comp f g (x + h) - comp f g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

h = id (x + h) - comp f g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

h = x + h - x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

h = h + 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x

lb <= x + h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x

forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
lb <= x + h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

lb <= x + h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

Rabs (- h) < Rabs (x - lb)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

Rabs h < Rabs (x - lb)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z
x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

x - lb > 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Sublemma:forall x0 y0 z : R, - z <= y0 - x0 -> x0 <= y0 + z

x > lb
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

h <> 0 /\ g (x + h) - g x <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

h <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
g (x + h) - g x <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub

g (x + h) - g x <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x

comp f g (x + h) = comp f g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x

x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x

id (x + h) = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x

id (x + h) = id x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x

comp f g (x + h) = id x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x

comp f g (x + h) = comp f g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x

lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x

h = 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x
H1:h = 0
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
Sublemma2:forall x0 y0 : R, Rabs x0 < Rabs y0 -> y0 > 0 -> x0 < y0
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hf:g (x + h) = g x
H0:comp f g (x + h) = comp f g x
Main:x + h = x
H1:h = 0

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

Rabs ((g (x + h) - g x) / h - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

Rabs (1 / (h / (g (x + h) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

h = comp f g (x + h) - comp f g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Rabs (1 / (h / (g (x + h) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

h = id (x + h) - comp f g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Rabs (1 / (h / (g (x + h) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

h = id (x + h) - id x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Rabs (1 / (h / (g (x + h) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Rabs (1 / (h / (g (x + h) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
Rabs (1 / (h / (g (x + h) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x

Rabs (1 / (h / (g (x + h) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x

Rabs (1 / ((comp f g (x + h) - comp f g x) / (g (x + h) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x

Rabs (1 / ((f (g (x + h)) - f (g x)) / (g (x + h) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x

Rabs (1 / ((f (g x + (g (x + h) - g x)) - f (g x)) / (g x + (g (x + h) - g x) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R

Rabs (1 / ((f (g x + (g (x + h) - g x)) - f (g x)) / (g x + (g (x + h) - g x) - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R

Rabs (1 / ((f (g x + h') - f (g x)) / (g x + h' - g x)) - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R

Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R

h' <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R

g (x + h) - g x <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) - g x = 0

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x

comp f g (x + h) = comp f g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':comp f g (x + h) = comp f g x
False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':comp f g (x + h) = comp f g x

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = id x

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = comp f g x
lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':x + h = x

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = comp f g x
lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':h = 0

False
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = comp f g x
lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = comp f g x

lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':id (x + h) = comp f g x

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
Hfalse:g (x + h) = g x
Hfalse':comp f g (x + h) = comp f g x

lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0

Rabs (1 / ((f (g x + h') - f (g x)) / h') - 1 / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0

Rabs (/ ((f (g x + h') - f (g x)) / h') - / l) < eps
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0

h' <> 0 /\ Rabs (h' - 0) < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0

h' <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
Rabs (h' - 0) < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0

Rabs (h' - 0) < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0

Rabs h' < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0

Rabs h' < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0

forall x0 : R, x0 > 0 /\ (forall x1 : Base R_met, D_x no_cond x x1 /\ dist R_met x1 x < x0 -> dist R_met (g x1) (g x) < mydelta) -> Rabs h' < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta3 -> dist R_met (g x0) (g x) < mydelta)

Rabs h' < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)

Rabs h' < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)

Rabs (g (x + h) - g x) < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)

mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Rabs (g (x + h) - g x) < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)

delta <= alpha -> delta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
~ delta <= alpha -> alpha <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Rabs (g (x + h) - g x) < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)

~ delta <= alpha -> alpha <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Rabs (g (x + h) - g x) < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

Rabs (g (x + h) - g x) < alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

Rabs (g (x + h) - g x) < mydelta
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

D_x no_cond x (x + h) /\ Rabs (x + h - x) < delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

D_x no_cond x (x + h)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Rabs (x + h - x) < delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

no_cond (x + h) /\ x <> x + h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Rabs (x + h - x) < delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

no_cond (x + h)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
x <> x + h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Rabs (x + h - x) < delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

x <> x + h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Rabs (x + h - x) < delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Hfalse:x = x + h

h = 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Rabs (x + h - x) < delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Hfalse:x = x + h

x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
Rabs (x + h - x) < delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

Rabs (x + h - x) < delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

Rabs h < delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

Rabs h < delta''
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
delta'' <= delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

delta'' <= delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) = 0 -> False
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> (l0 = 0 -> False) -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l = 0 -> False
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |}:posreal
h:R
h_neq:h = 0 -> False
h_le_delta':Rabs h < delta''
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' = 0 -> False
delta3:R
mydelta_le_alpha:mydelta <= alpha
H0:lb < x
H1:x < ub
H2:lb <= x
H3:x <= ub
H4:lb <= x + h
H5:x + h <= ub
H:delta3 > 0
H6:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta
H8:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)

delta'' <= delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) = 0 -> False
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> (l0 = 0 -> False) -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l = 0 -> False
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |}:posreal
h:R
h_neq:h = 0 -> False
h_le_delta':Rabs h < delta''
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' = 0 -> False
delta3:R
mydelta_le_alpha:mydelta <= alpha
H0:lb < x
H1:x < ub
H2:lb <= x
H3:x <= ub
H4:lb <= x + h
H5:x + h <= ub
H:delta3 > 0
H6:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta
H8:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)

delta'' <= mydelta''
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) = 0 -> False
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> (l0 = 0 -> False) -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l = 0 -> False
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |}:posreal
h:R
h_neq:h = 0 -> False
h_le_delta':Rabs h < delta''
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' = 0 -> False
delta3:R
mydelta_le_alpha:mydelta <= alpha
H0:lb < x
H1:x < ub
H2:lb <= x
H3:x <= ub
H4:lb <= x + h
H5:x + h <= ub
H:delta3 > 0
H6:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta
H8:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
mydelta'' <= delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) = 0 -> False
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> (l0 = 0 -> False) -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l = 0 -> False
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |}:posreal
h:R
h_neq:h = 0 -> False
h_le_delta':Rabs h < delta''
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' = 0 -> False
delta3:R
mydelta_le_alpha:mydelta <= alpha
H0:lb < x
H1:x < ub
H2:lb <= x
H3:x <= ub
H4:lb <= x + h
H5:x + h <= ub
H:delta3 > 0
H6:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta
H8:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)

delta'' = mydelta''
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) = 0 -> False
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> (l0 = 0 -> False) -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l = 0 -> False
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |}:posreal
h:R
h_neq:h = 0 -> False
h_le_delta':Rabs h < delta''
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' = 0 -> False
delta3:R
mydelta_le_alpha:mydelta <= alpha
H0:lb < x
H1:x < ub
H2:lb <= x
H3:x <= ub
H4:lb <= x + h
H5:x + h <= ub
H:delta3 > 0
H6:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta
H8:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
mydelta'' <= delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) = 0 -> False
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> (l0 = 0 -> False) -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l = 0 -> False
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |}:posreal
h:R
h_neq:h = 0 -> False
h_le_delta':Rabs h < delta''
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' = 0 -> False
delta3:R
mydelta_le_alpha:mydelta <= alpha
H0:lb < x
H1:x < ub
H2:lb <= x
H3:x <= ub
H4:lb <= x + h
H5:x + h <= ub
H:delta3 > 0
H6:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta
H8:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)

{| pos := mydelta''; cond_pos := mydelta''_pos |} = mydelta''
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) = 0 -> False
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> (l0 = 0 -> False) -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l = 0 -> False
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |}:posreal
h:R
h_neq:h = 0 -> False
h_le_delta':Rabs h < delta''
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' = 0 -> False
delta3:R
mydelta_le_alpha:mydelta <= alpha
H0:lb < x
H1:x < ub
H2:lb <= x
H3:x <= ub
H4:lb <= x + h
H5:x + h <= ub
H:delta3 > 0
H6:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta
H8:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
mydelta'' <= delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) = 0 -> False
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> (l0 = 0 -> False) -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l = 0 -> False
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta' -> Rabs (g x0 - g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |}:posreal
h:R
h_neq:h = 0 -> False
h_le_delta':Rabs h < delta''
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' = 0 -> False
delta3:R
mydelta_le_alpha:mydelta <= alpha
H0:lb < x
H1:x < ub
H2:lb <= x
H3:x <= ub
H4:lb <= x + h
H5:x + h <= ub
H:delta3 > 0
H6:forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta
H8:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (x0 = 0 -> False) /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)

mydelta'' <= delta'
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha
mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps0)
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hrewr:h = comp f g (x + h) - comp f g x
h':=g (x + h) - g x:R
h'_neq:h' <> 0
delta3:R
cond3:delta3 > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < delta3 -> Rabs (g x0 - g x) < mydelta)
mydelta_le_alpha:mydelta <= alpha

mydelta <= alpha
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

1 / (h / (g (x + h) - g x)) = (g (x + h) - g x) / h
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

h <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
g (x + h) - g x <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub

g (x + h) - g x <> 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0

h = 0
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0

x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0

comp f g (x + h) = comp f g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:comp f g (x + h) = comp f g x
x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) = g x

comp f g (x + h) = comp f g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:comp f g (x + h) = comp f g x
x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) = g x

f (g (x + h)) = f (g x)
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:comp f g (x + h) = comp f g x
x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:comp f g (x + h) = comp f g x

x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:id (x + h) = comp f g x

x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:id (x + h) = id x

x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:id (x + h) = comp f g x
lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:x + h = x

x + h = x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:id (x + h) = comp f g x
lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:id (x + h) = comp f g x

lb <= x <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:comp f g (x + h) = comp f g x
lb <= x + h <= ub
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> {l0 : R | forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (a + h0) - f a) / h0 - l0) < eps0}
g_cont_pur:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0
x_encad2:lb <= x <= ub
l:R
Hl:derivable_pt_abs f (g x) l
eps:R
eps_pos:0 < eps
y:=g x:R
Hlinv:forall (f0 : R -> R) (D : R -> Prop) (l0 x0 : R), limit1_in f0 D l0 x0 -> l0 <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x1 x0 < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (/ f0 x1) (/ l0) < eps0)
Hf_deriv:forall eps0 : R, 0 < eps0 -> exists delta0 : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta0 -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps0
deltatemp:posreal
Htemp:forall h0 : R, h0 <> 0 -> Rabs h0 < deltatemp -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
Hlinv':(forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)) -> l <> 0 -> forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps0)
Premisse:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, (fun h0 : R => h0 <> 0) x0 /\ Rabs (x0 - 0) < alp -> Rabs ((f (y + x0) - f y) / x0 - l) < eps0)
Premisse2:l <> 0
alpha:R
alpha_pos:alpha > 0
inv_cont:forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alpha -> Rabs (/ ((f (y + x0) - f y) / x0) - / l) < eps
delta:posreal
f_deriv:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((f (g x + h0) - f (g x)) / h0 - l) < eps
mydelta:=Rmin delta alpha:R
mydelta_pos:mydelta > 0
delta':R
delta'_pos:delta' > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta' -> dist R_met (g x0) (g x) < mydelta
mydelta'':=Rmin delta' (Rmin (x - lb) (ub - x)):R
mydelta''_pos:mydelta'' > 0
delta'':={| pos := mydelta''; cond_pos := mydelta''_pos |} : posreal:posreal
h:R
h_neq:h <> 0
h_le_delta':Rabs h < delta''
H:lb <= x + h <= ub
Hfalse:g (x + h) - g x = 0
Hfin:comp f g (x + h) = comp f g x

lb <= x + h <= ub
assumption. Qed.

forall (f g : R -> R) (lb ub x : R) (Prf : forall a : R, g lb <= a <= g ub -> derivable_pt f a), continuity_pt g x -> lb < ub -> lb < x < ub -> forall Prg_incr : g lb <= g x <= g ub, (forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0) -> derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 -> derivable_pt g x

forall (f g : R -> R) (lb ub x : R) (Prf : forall a : R, g lb <= a <= g ub -> derivable_pt f a), continuity_pt g x -> lb < ub -> lb < x < ub -> forall Prg_incr : g lb <= g x <= g ub, (forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0) -> derive_pt f (g x) (Prf (g x) Prg_incr) <> 0 -> derivable_pt g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pt:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0

derivable_pt g x
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pt:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0

{l : R | derivable_pt_lim g x l}
f, g:R -> R
lb, ub, x:R
Prf:forall a : R, g lb <= a <= g ub -> derivable_pt f a
g_cont_pt:continuity_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
Prg_incr:g lb <= g x <= g ub
f_eq_g:forall x0 : R, lb <= x0 <= ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) (Prf (g x) Prg_incr) <> 0

derivable_pt_lim g x (1 / derive_pt f (g x) (Prf (g x) Prg_incr))
apply derivable_pt_lim_recip_interv ; assumption. Qed.

forall (f g : R -> R) (lb ub x : R), lb < ub -> f lb < x < f ub -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) -> (forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) -> (forall a : R, lb <= a <= ub -> derivable_pt f a) -> derivable_pt f (g x)

forall (f g : R -> R) (lb ub x : R), lb < ub -> f lb < x < f ub -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) -> (forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) -> (forall a : R, lb <= a <= ub -> derivable_pt f a) -> derivable_pt f (g x)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a

derivable_pt f (g x)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a

lb <= g x <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0

lb <= g x <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0

comp g f lb <= g x <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
comp g f lb = lb
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0

comp g f lb <= g x <= comp g f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
comp g f ub = ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
comp g f lb = lb
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0

g (f lb) <= g x <= g (f ub)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
comp g f ub = ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
comp g f lb = lb
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y

g (f lb) <= g x <= g (f ub)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
comp g f ub = ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
comp g f lb = lb
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0

comp g f ub = ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0
comp g f lb = lb
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_ok:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0

comp g f lb = lb
apply Left_inv ; intuition. Qed.

forall (f g : R -> R) (lb ub x : R) (lb_lt_ub : lb < ub) (x_encad : f lb < x < f ub) (f_eq_g : forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) (g_wf : forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) (f_incr : forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) (f_derivable : forall a : R, lb <= a <= ub -> derivable_pt f a), derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0 -> derivable_pt g x

forall (f g : R -> R) (lb ub x : R) (lb_lt_ub : lb < ub) (x_encad : f lb < x < f ub) (f_eq_g : forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) (g_wf : forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) (f_incr : forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) (f_derivable : forall a : R, lb <= a <= ub -> derivable_pt f a), derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0 -> derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0

derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0

g (f lb) < g x < g (f ub)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y

g (f lb) < g x < g (f ub)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y

f lb < x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
x <= f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
f lb <= x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y

x <= f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
f lb <= x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y

f lb <= x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y

x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)

derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)

g (f lb) <= g x <= g (f ub)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)

derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0

derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0

derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0

forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a0 : R, lb <= a0 <= ub -> derivable_pt f a0
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
a:R
a_encad:g (f lb) <= a <= g (f ub)

lb <= a <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a

derivable_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a

continuity_pt g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f lb < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f lb < x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
forall x0 : R, f lb <= x0 <= f ub -> comp f g x0 = id x0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
derive_pt f (g x) (f_derivable2 (g x) g_incr2) <> 0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a0 : R, lb <= a0 <= ub -> derivable_pt f a0
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a0 : R, g (f lb) <= a0 <= g (f ub) -> derivable_pt f a0
H:g (f lb) < g x
H0:g x < g (f ub)
H1:g (f lb) <= g x
H2:g x <= g (f ub)
a:R
H4:lb <= a
H5:a <= ub

continuity_pt f a
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
H:g (f lb) < g x
H0:g x < g (f ub)
H1:g (f lb) <= g x
H2:g x <= g (f ub)
f lb < x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
H:g (f lb) < g x
H0:g x < g (f ub)
H1:g (f lb) <= g x
H2:g x <= g (f ub)
x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f lb < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f lb < x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
forall x0 : R, f lb <= x0 <= f ub -> comp f g x0 = id x0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
derive_pt f (g x) (f_derivable2 (g x) g_incr2) <> 0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
H:g (f lb) < g x
H0:g x < g (f ub)
H1:g (f lb) <= g x
H2:g x <= g (f ub)

f lb < x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
H:g (f lb) < g x
H0:g x < g (f ub)
H1:g (f lb) <= g x
H2:g x <= g (f ub)
x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f lb < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f lb < x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
forall x0 : R, f lb <= x0 <= f ub -> comp f g x0 = id x0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
derive_pt f (g x) (f_derivable2 (g x) g_incr2) <> 0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) = 0 -> False
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
H:g (f lb) < g x
H0:g x < g (f ub)
H1:g (f lb) <= g x
H2:g x <= g (f ub)

x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f lb < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f lb < x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
forall x0 : R, f lb <= x0 <= f ub -> comp f g x0 = id x0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
derive_pt f (g x) (f_derivable2 (g x) g_incr2) <> 0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a

f lb < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
f lb < x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
forall x0 : R, f lb <= x0 <= f ub -> comp f g x0 = id x0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
derive_pt f (g x) (f_derivable2 (g x) g_incr2) <> 0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a

f lb < x < f ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
forall x0 : R, f lb <= x0 <= f ub -> comp f g x0 = id x0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
derive_pt f (g x) (f_derivable2 (g x) g_incr2) <> 0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a

forall x0 : R, f lb <= x0 <= f ub -> comp f g x0 = id x0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a
derive_pt f (g x) (f_derivable2 (g x) g_incr2) <> 0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
f_derivable:forall a : R, lb <= a <= ub -> derivable_pt f a
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) <> 0
g_incr:g (f lb) < g x < g (f ub)
g_incr2:g (f lb) <= g x <= g (f ub)
g_eq_f:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
f_derivable2:forall a : R, g (f lb) <= a <= g (f ub) -> derivable_pt f a

derive_pt f (g x) (f_derivable2 (g x) g_incr2) <> 0
rewrite pr_nu_var2_interv with (g:=f) (lb:=lb) (ub:=ub) (pr2:=derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr f_derivable) ; [| |rewrite g_eq_f in g_incr ; rewrite g_eq_f in g_incr| ] ; intuition. Qed. (****************************************************)

Value of the derivative of the reciprocal function

(****************************************************)


forall (f g : R -> R) (lb ub x : R) (Prf : derivable_pt f (g x)) (Prg : derivable_pt g x), lb < ub -> lb < x < ub -> (forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0) -> derive_pt f (g x) Prf <> 0 -> derive_pt g x Prg = 1 / derive_pt f (g x) Prf

forall (f g : R -> R) (lb ub x : R) (Prf : derivable_pt f (g x)) (Prg : derivable_pt g x), lb < ub -> lb < x < ub -> (forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0) -> derive_pt f (g x) Prf <> 0 -> derive_pt g x Prg = 1 / derive_pt f (g x) Prf
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

derive_pt g x Prg = 1 / derive_pt f (g x) Prf
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = 1 / derive_pt f (g x) Prf
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = 1 * / derive_pt f (g x) Prf
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

/ derive_pt f (g x) Prf * (derive_pt g x Prg * derive_pt f (g x) Prf) = 1 * / derive_pt f (g x) Prf
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

/ derive_pt f (g x) Prf * (derive_pt g x Prg * derive_pt f (g x) Prf) = / derive_pt f (g x) Prf * 1
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

derive_pt g x Prg * derive_pt f (g x) Prf = 1
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

derive_pt f (g x) Prf * derive_pt g x Prg = 1
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

derive_pt (comp f g) x (derivable_pt_comp g f x Prg Prf) = 1
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
x_encad2:lb <= x <= ub

derive_pt (comp f g) x (derivable_pt_comp g f x Prg Prf) = 1
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

derive_pt g x Prg * derive_pt f (g x) Prf * / derive_pt f (g x) Prf = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

derive_pt g x Prg * 1 = derive_pt g x Prg
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0
derive_pt f (g x) Prf <> 0
f, g:R -> R
lb, ub, x:R
Prf:derivable_pt f (g x)
Prg:derivable_pt g x
lb_lt_ub:lb < ub
x_encad:lb < x < ub
local_recip:forall x0 : R, lb < x0 < ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) Prf <> 0

derive_pt f (g x) Prf <> 0
assumption. Qed.

forall (f g : R -> R) (lb ub x : R), lb < ub -> f lb < x < f ub -> (forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) -> lb < g x < ub

forall (f g : R -> R) (lb ub x : R), lb < ub -> f lb < x < f ub -> (forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) -> lb < g x < ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0

lb < g x < ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y

lb < g x < ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> comp g f x0 = id x0

lb < g x < ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0

lb < g x < ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0

g (f lb) < g x
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
lb <= lb <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
g x < g (f ub)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
lb <= ub <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0

lb <= lb <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
g x < g (f ub)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
lb <= ub <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0

g x < g (f ub)
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0
lb <= ub <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:forall x0 y : R, f lb <= x0 -> x0 < y -> y <= f ub -> g x0 < g y
Left_inv:forall x0 : R, lb <= x0 <= ub -> g (f x0) = x0

lb <= ub <= ub
intuition. Qed.

forall (f g : R -> R) (lb ub x : R), lb < ub -> f lb < x < f ub -> (forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) -> lb <= g x <= ub

forall (f g : R -> R) (lb ub x : R), lb < ub -> f lb < x < f ub -> (forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) -> (forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) -> lb <= g x <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0

lb <= g x <= ub
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Temp:lb < g x < ub

lb <= g x <= ub
split ; apply Rlt_le ; intuition. Qed.

forall (f g : R -> R) (lb ub x : R) (lb_lt_ub : lb < ub) (x_encad : f lb < x < f ub) (f_incr : forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) (g_wf : forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) (Prf : forall a : R, lb <= a <= ub -> derivable_pt f a) (f_eq_g : forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) (Df_neq : derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0), derive_pt g x (derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf Df_neq) = 1 / derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g))

forall (f g : R -> R) (lb ub x : R) (lb_lt_ub : lb < ub) (x_encad : f lb < x < f ub) (f_incr : forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y) (g_wf : forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub) (Prf : forall a : R, lb <= a <= ub -> derivable_pt f a) (f_eq_g : forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0) (Df_neq : derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0), derive_pt g x (derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf Df_neq) = 1 / derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g))
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
Prf:forall a : R, lb <= a <= ub -> derivable_pt f a
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0

derive_pt g x (derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf Df_neq) = 1 / derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g))
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
Prf:forall a : R, lb <= a <= ub -> derivable_pt f a
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0
g_incr:lb <= g x <= ub

derive_pt g x (derivable_pt_recip_interv f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf Df_neq) = 1 / derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g))
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
Prf:forall a : R, lb <= a <= ub -> derivable_pt f a
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0
g_incr:lb <= g x <= ub

derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g)) <> 0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
Prf:forall a : R, lb <= a <= ub -> derivable_pt f a
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0
g_incr:lb <= g x <= ub
Hfalse:derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g)) = 0

derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) = 0
f, g:R -> R
lb, ub, x:R
lb_lt_ub:lb < ub
x_encad:f lb < x < f ub
f_incr:forall x0 y : R, lb <= x0 -> x0 < y -> y <= ub -> f x0 < f y
g_wf:forall x0 : R, f lb <= x0 -> x0 <= f ub -> lb <= g x0 <= ub
Prf:forall a : R, lb <= a <= ub -> derivable_pt f a
f_eq_g:forall x0 : R, f lb <= x0 -> x0 <= f ub -> comp f g x0 = id x0
Df_neq:derive_pt f (g x) (derivable_pt_recip_interv_prelim1 f g lb ub x lb_lt_ub x_encad f_eq_g g_wf f_incr Prf) <> 0
g_incr:lb <= g x <= ub
Hfalse:derive_pt f (g x) (Prf (g x) (derive_pt_recip_interv_prelim1_1 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g)) = 0

lb < g x < ub
exact (derive_pt_recip_interv_prelim1_0 f g lb ub x lb_lt_ub x_encad f_incr g_wf f_eq_g). Qed. (****************************************************)

Existence of the derivative of a function which is the limit of a sequence of functions

(****************************************************)

(* begin hide *)

forall x ub lb : R, lb < x -> x < ub -> 0 < (ub - lb) / 2

forall x ub lb : R, lb < x -> x < ub -> 0 < (ub - lb) / 2
x, ub, lb:R
lb_lt_x:lb < x
x_lt_ub:x < ub

0 < (ub - lb) / 2
lra. Qed.
x, lb, ub:R
lb_lt_x:lb < x
x_lt_ub:x < ub

posreal
apply (mkposreal ((ub-lb)/2) (ub_lt_2_pos x ub lb lb_lt_x x_lt_ub)). Defined. (* end hide *)

forall (fn fn' : nat -> R -> R) (f g : R -> R) (x c : R) (r : posreal), Boule c r x -> (forall (y : R) (n : nat), Boule c r y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c r y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c r -> (forall y : R, Boule c r y -> continuity_pt g y) -> derivable_pt_lim f x (g x)

forall (fn fn' : nat -> R -> R) (f g : R -> R) (x c : R) (r : posreal), Boule c r x -> (forall (y : R) (n : nat), Boule c r y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c r y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c r -> (forall y : R, Boule c r y -> continuity_pt g y) -> derivable_pt_lim f x (g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
g_cont:forall y : R, Boule c' r y -> continuity_pt g y
eps:R
eps_pos:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
g_cont:forall y : R, Boule c' r y -> continuity_pt g y
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta

0 < Rabs h * eps / 4
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta

0 < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
0 < eps * / 4
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta

0 < eps * / 4
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4

Boule x delta (x + h)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
Rabs ((f (x + h) - f x) / h - g x) < eps
x:R
delta:posreal
h:R
hinbdelta:h < delta /\ - delta < h

Rabs (x + h - x) < delta
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)

Boule c' r (x + h)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
t:Boule c' r (x + h)
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
t:Boule c' r (x + h)

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn_CV_f:forall y : R, Boule c' r y -> Un_cv (fun n : nat => fn n y) (f y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
t:Boule c' r (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat

Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat

Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) <= Rabs (f (x + h) - fn N (x + h) - (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Rabs (f (x + h) - fn N (x + h) - (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat

Rabs (f (x + h) - fn N (x + h) - (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat

Rabs (f (x + h) - fn N (x + h) - (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x) <= Rabs (f (x + h) - fn N (x + h)) + Rabs (- (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Rabs (f (x + h) - fn N (x + h)) + Rabs (- (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat

Rabs (f (x + h) - fn N (x + h)) + Rabs (- (f x - fn N x)) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0

forall c : R, x + h < c < x -> derivable_pt (fn N) c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
c:R
c_encad:x + h < c < x

{l : R | derivable_pt_abs (fn N) c l}
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
c:R
c_encad:x + h < c < x

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
c:R
c_encad:x + h < c < x

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
c:R
c_encad:x + h < c < x
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
H:x + h - x < delta
H0:- delta < x + h - x
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
c:R
H1:x + h < c
H2:c < x

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
c:R
c_encad:x + h < c < x
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
c:R
c_encad:x + h < c < x
t:Boule x delta c

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c

forall c : R, x + h < c < x -> derivable_pt id c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x

forall c : R, x + h <= c <= x -> continuity_pt (fn N) c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
c:R
c_encad:x + h <= c <= x

derivable_pt (fn N) c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
c:R
H:x + h <= c
H0:c <= x

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
c:R
H:x + h <= c
H0:c <= x

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
c:R
H:x + h <= c
H0:c <= x
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
H1:x + h - x < delta
H2:- delta < x + h - x
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
c:R
H:x + h <= c
H0:c <= x

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
c:R
H:x + h <= c
H0:c <= x
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
c:R
H:x + h <= c
H0:c <= x
t:Boule x delta c

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c

forall c : R, x + h <= c <= x -> continuity_pt id c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c
pr4:forall c : R, x + h <= c <= x -> continuity_pt id c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c : R, x + h < c < x -> derivable_pt (fn N) c
pr2:forall c : R, x + h < c < x -> derivable_pt id c
xh_x:x + h < x
pr3:forall c : R, x + h <= c <= x -> continuity_pt (fn N) c
pr4:forall c : R, x + h <= c <= x -> continuity_pt id c

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)

h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)

-1 * (h * derive_pt (fn N) c (pr1 c P)) = -1 * (fn N (x + h) - fn N x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
-1 <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)

- h * derive_pt (fn N) c (pr1 c P) = -1 * (fn N (x + h) - fn N x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
-1 <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)

- h * derive_pt (fn N) c (pr1 c P) = - (fn N (x + h) - fn N x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
-1 <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)

(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = - (fn N (x + h) - fn N x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
-1 <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)

(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = - (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
-1 <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)

(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
-1 <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)

-1 <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Hc:(id x - id (x + h)) * derive_pt (fn N) c (pr1 c P) = (fn N x - fn N (x + h)) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (h * derive_pt (fn N) c (pr1 c P) - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (h * fn' N c - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (h * (fn' N c - g x)) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> Rabs (fn n (x + h) - f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

(N >= N1)%nat
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs (f x - fn N x) < Rabs h * eps / 4
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> Rabs (fn n x - f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

(N >= N2)%nat
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c + (g c - g x)) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c + (g c - g x)) <= Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

0 <= Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs (fn' N c - g c + (g c - g x)) <= Rabs (fn' N c - g c) + Rabs (g c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs (fn' N c - g c + (g c - g x)) <= Rabs (fn' N c - g c) + Rabs (g c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

0 < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs (fn' N c - g c) < eps / 8
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs (fn' N c - g c) < eps / 8
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

(N3 <= N)%nat
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
H:x + h < c
H0:c < x

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
H1:x + h - x < delta
H2:- delta < x + h - x
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
H:x + h < c
H0:c < x

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
t:Boule x delta c

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

0 < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
eps / 8 + Rabs (g c - g x) < eps / 8 + eps / 8
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

eps / 8 + Rabs (g c - g x) < eps / 8 + eps / 8
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

no_cond c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
x <> c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
R_dist c x < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

x <> c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
R_dist c x < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

R_dist c x < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

R_dist c x < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

c - x < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
- Rabs h < c - x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

c - x < 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
0 < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
- Rabs h < c - x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

0 < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
- Rabs h < c - x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

- Rabs h < c - x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

h < c - x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
x, c':R
r:posreal
delta1:R
delta1_pos:delta1 > 0
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
xhinbxdelta:Boule x delta (x + h)

Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
x, c':R
r:posreal
delta1:R
delta1_pos:delta1 > 0
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
P':Boule x {| pos := delta1; cond_pos := delta1_pos |} (x + h)

Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8)) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

0 < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
eps / 4 + eps / 4 + eps / 8 + eps / 8 < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

eps / 4 + eps / 4 + eps / 8 + eps / 8 < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x

fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l

fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l

l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
x:R
delta:posreal
h:R
xhinbxdelta:Boule x delta (x + h)
c:R
P:x + h < c < x

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
x:R
delta:posreal
h:R
H1:x + h - x < delta
H2:- delta < x + h - x
c:R
H:x + h < c
H0:c < x

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
t:Boule x delta c

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c

l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
Hl':derivable_pt_lim (fn N) c (fn' N c)

l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
N2, N1, N3:nat
N:=(N1 + N2 + N3)%nat:nat
c, l:R
Hl:derivable_pt_lim (fn N) c l
Hl':derivable_pt_lim (fn N) c (fn' N c)

l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c

fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c

l = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c

derivable_pt (fn N) c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
l = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c

l = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c

l = derive_pt (fn N) c Hl'
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
l':R
Hl':derivable_pt_abs (fn N) c l'

l = derive_pt (fn N) c (exist (fun l0 : R => derivable_pt_abs (fn N) c l0) l' Hl')
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
l':R
Hl':derivable_pt_abs (fn N) c l'

l = l'
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
l':R
Hl':derivable_pt_abs (fn N) c l'
Main:l = l'
l = derive_pt (fn N) c (exist (fun l0 : R => derivable_pt_abs (fn N) c l0) l' Hl')
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
l':R
Hl':derivable_pt_abs (fn N) c l'
Main:l = l'

l = derive_pt (fn N) c (exist (fun l0 : R => derivable_pt_abs (fn N) c l0) l' Hl')
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:h < 0
pr1:forall c0 : R, x + h < c0 < x -> derivable_pt (fn N) c0
pr2:forall c0 : R, x + h < c0 < x -> derivable_pt id c0
xh_x:x + h < x
pr3:forall c0 : R, x + h <= c0 <= x -> continuity_pt (fn N) c0
pr4:forall c0 : R, x + h <= c0 <= x -> continuity_pt id c0
c:R
P:x + h < c < x
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c

fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h

h > 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
h_pos:h > 0
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Hyp:0 < h

h > 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Hyp:0 = h
h > 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
h_pos:h > 0
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
Hyp:0 = h

h > 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
h_pos:h > 0
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
sgn_h:0 <= h
h_pos:h > 0

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0

forall c : R, x < c < x + h -> derivable_pt (fn N) c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
c:R
c_encad:x < c < x + h

{l : R | derivable_pt_abs (fn N) c l}
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
c:R
c_encad:x < c < x + h

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
c:R
c_encad:x < c < x + h

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
c:R
c_encad:x < c < x + h
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
H:x + h - x < delta
H0:- delta < x + h - x
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
c:R
H1:x < c
H2:c < x + h

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
c:R
c_encad:x < c < x + h
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
c:R
c_encad:x < c < x + h
t:Boule x delta c

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c

forall c : R, x < c < x + h -> derivable_pt id c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h

forall c : R, x <= c <= x + h -> continuity_pt (fn N) c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
c:R
c_encad:x <= c <= x + h

derivable_pt (fn N) c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
c:R
H:x <= c
H0:c <= x + h

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
c:R
H:x <= c
H0:c <= x + h

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
c:R
H:x <= c
H0:c <= x + h
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
H1:x + h - x < delta
H2:- delta < x + h - x
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
c:R
H:x <= c
H0:c <= x + h

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
c:R
H:x <= c
H0:c <= x + h
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h = 0 -> False
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
c:R
H:x <= c
H0:c <= x + h
t:Boule x delta c

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c

forall c : R, x <= c <= x + h -> continuity_pt id c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c
pr4:forall c : R, x <= c <= x + h -> continuity_pt id c
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c : R, x < c < x + h -> derivable_pt (fn N) c
pr2:forall c : R, x < c < x + h -> derivable_pt id c
xh_x:x < x + h
pr3:forall c : R, x <= c <= x + h -> continuity_pt (fn N) c
pr4:forall c : R, x <= c <= x + h -> continuity_pt id c

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Hc:(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Hc:(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)

h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Hc:(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Hc:(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)

(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Hc:(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Hc:(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)

(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Hc:(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x
Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Hc:(id (x + h) - id x) * derive_pt (fn N) c (pr1 c P) = (fn N (x + h) - fn N x) * derive_pt id c (pr2 c P)
Hc':h * derive_pt (fn N) c (pr1 c P) = fn N (x + h) - fn N x

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (fn N (x + h) - fn N x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (h * derive_pt (fn N) c (pr1 c P) - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (h * fn' N c - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs (h * (fn' N c - g x)) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs (f (x + h) - fn N (x + h)) + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> Rabs (fn n (x + h) - f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

(N >= N1)%nat
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs (f x - fn N x) + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs (f x - fn N x) < Rabs h * eps / 4
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> Rabs (fn n x - f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

(N >= N2)%nat
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c + (g c - g x)) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c + (g c - g x)) <= Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

0 <= Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs (fn' N c - g c + (g c - g x)) <= Rabs (fn' N c - g c) + Rabs (g c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs (fn' N c - g c + (g c - g x)) <= Rabs (fn' N c - g c) + Rabs (g c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * Rabs (fn' N c - g c) + Rabs h * Rabs (g c - g x) < Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

0 < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs (fn' N c - g c) < eps / 8
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs (fn' N c - g c) < eps / 8
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

(N3 <= N)%nat
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
H:x < c
H0:c < x + h

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
H1:x + h - x < delta
H2:- delta < x + h - x
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
H:x < c
H0:c < x + h

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
t:Boule x delta c

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * Rabs (g c - g x) < Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

0 < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
eps / 8 + Rabs (g c - g x) < eps / 8 + eps / 8
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

eps / 8 + Rabs (g c - g x) < eps / 8 + eps / 8
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

no_cond c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
x <> c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
R_dist c x < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

x <> c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
R_dist c x < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

R_dist c x < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

R_dist c x < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

c - x < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
- Rabs h < c - x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

- Rabs h < c - x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

- Rabs h <= 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
0 < c - x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

0 < c - x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : R, D_x no_cond x x0 /\ R_dist x0 x < delta1 -> R_dist (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
x, c':R
r:posreal
delta1:R
delta1_pos:delta1 > 0
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
xhinbxdelta:Boule x delta (x + h)

Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
x, c':R
r:posreal
delta1:R
delta1_pos:delta1 > 0
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
P':Boule x {| pos := delta1; cond_pos := delta1_pos |} (x + h)

Rabs h < delta1
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + Rabs h * eps / 4 + Rabs h * (eps / 8) + Rabs h * (eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * eps / 4 + (Rabs h * eps / 4 + Rabs h * (eps / 8 + eps / 8)) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

Rabs h * (eps / 4 + eps / 4 + eps / 8 + eps / 8) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

0 < Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
eps / 4 + eps / 4 + eps / 8 + eps / 8 < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

eps / 4 + eps / 4 + eps / 8 + eps / 8 < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h

fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l

fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l

l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
x:R
delta:posreal
h:R
xhinbxdelta:Boule x delta (x + h)
c:R
P:x < c < x + h

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
x:R
delta:posreal
h:R
H1:x + h - x < delta
H2:- delta < x + h - x
c:R
H:x < c
H0:c < x + h

Boule x delta c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
t:Boule x delta c
Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
t:Boule x delta c

Boule c' r c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c

l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
bc'rc:Boule c' r c
Hl':derivable_pt_lim (fn N) c (fn' N c)

l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
N2, N1, N3:nat
N:=(N1 + N2 + N3)%nat:nat
c, l:R
Hl:derivable_pt_lim (fn N) c l
Hl':derivable_pt_lim (fn N) c (fn' N c)

l = fn' N c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c

fn' N c = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c

l = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c

derivable_pt (fn N) c
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
l = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c

l = derive_pt (fn N) c (pr1 c P)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c

l = derive_pt (fn N) c Hl'
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
l':R
Hl':derivable_pt_abs (fn N) c l'

l = derive_pt (fn N) c (exist (fun l0 : R => derivable_pt_abs (fn N) c l0) l' Hl')
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
l':R
Hl':derivable_pt_abs (fn N) c l'

l = l'
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
l':R
Hl':derivable_pt_abs (fn N) c l'
Main:l = l'
l = derive_pt (fn N) c (exist (fun l0 : R => derivable_pt_abs (fn N) c l0) l' Hl')
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
l':R
Hl':derivable_pt_abs (fn N) c l'
Main:l = l'

l = derive_pt (fn N) c (exist (fun l0 : R => derivable_pt_abs (fn N) c l0) l' Hl')
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c
fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
h_pos:h > 0
pr1:forall c0 : R, x < c0 < x + h -> derivable_pt (fn N) c0
pr2:forall c0 : R, x < c0 < x + h -> derivable_pt id c0
xh_x:x < x + h
pr3:forall c0 : R, x <= c0 <= x + h -> continuity_pt (fn N) c0
pr4:forall c0 : R, x <= c0 <= x + h -> continuity_pt id c0
c:R
P:x < c < x + h
l:R
Hl:derivable_pt_abs (fn N) c l
Temp:l = fn' N c
Hl':derivable_pt (fn N) c

fn N = fn N
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

Rabs ((f (x + h) - f x) / h - g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

Rabs (/ h * (f (x + h) - f x - h * g x)) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ h * (f (x + h) - f x - h * g x) = (f (x + h) - f x) / h - g x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

/ Rabs h * Rabs (f (x + h) - f x - h * g x) < eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
h <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ h * (f (x + h) - f x - h * g x) = (f (x + h) - f x) / h - g x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

/ Rabs h * Rabs (f (x + h) - f x - h * g x) < / Rabs h * (Rabs h * eps)
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ Rabs h * (Rabs h * eps) = eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
h <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ h * (f (x + h) - f x - h * g x) = (f (x + h) - f x) / h - g x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

0 < / Rabs h
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
Rabs (f (x + h) - f x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ Rabs h * (Rabs h * eps) = eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
h <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ h * (f (x + h) - f x - h * g x) = (f (x + h) - f x) / h - g x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

Rabs (f (x + h) - f x - h * g x) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ Rabs h * (Rabs h * eps) = eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
h <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ h * (f (x + h) - f x - h * g x) = (f (x + h) - f x) / h - g x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ Rabs h * (Rabs h * eps) = eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
h <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ h * (f (x + h) - f x - h * g x) = (f (x + h) - f x) / h - g x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

/ Rabs h * (Rabs h * eps) = eps
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
h <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ h * (f (x + h) - f x - h * g x) = (f (x + h) - f x) / h - g x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

h <> 0
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps
/ h * (f (x + h) - f x - h * g x) = (f (x + h) - f x) / h - g x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

/ h * (f (x + h) - f x - h * g x) = (f (x + h) - f x) / h - g x
fn, fn':nat -> R -> R
f, g:R -> R
x, c':R
r:posreal
xinb:Boule c' r x
Dfn_eq_fn':forall (y : R) (n : nat), Boule c' r y -> derivable_pt_lim (fn n) y (fn' n y)
fn'_CVU_g:CVU fn' g c' r
eps:R
eps_pos:0 < eps
eps_8_pos:0 < eps / 8
delta1:R
delta1_pos:delta1 > 0
g_cont:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta1 -> dist R_met (g x0) (g x) < eps / 8
delta:posreal
Pdelta:forall y : R, Boule x delta y -> Boule c' r y /\ Boule x {| pos := delta1; cond_pos := delta1_pos |} y
h:R
hpos:h <> 0
hinbdelta:Rabs h < delta
eps'_pos:0 < Rabs h * eps / 4
N2:nat
fnx_CV_fx:forall n : nat, (n >= N2)%nat -> R_dist (fn n x) (f x) < Rabs h * eps / 4
xhinbxdelta:Boule x delta (x + h)
N1:nat
fnxh_CV_fxh:forall n : nat, (n >= N1)%nat -> R_dist (fn n (x + h)) (f (x + h)) < Rabs h * eps / 4
N3:nat
fn'c_CVU_gc:forall (n : nat) (y : R), (N3 <= n)%nat -> Boule c' r y -> Rabs (g y - fn' n y) < eps / 8
N:=(N1 + N2 + N3)%nat:nat
Main:Rabs (f (x + h) - fn N (x + h) - (f x - fn N x) + (fn N (x + h) - fn N x - h * g x)) < Rabs h * eps

h <> 0
assumption. Qed.