Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import Rtrigo1. Require Import SeqSeries. Require Export Ranalysis1. Require Export Ranalysis2. Require Export Ranalysis3. Require Export Rtopology. Require Export MVT. Require Export PSeries_reg. Require Export Exp_prop. Require Export Rtrigo_reg. Require Export Rsqrt_def. Require Export R_sqrt. Require Export Rtrigo_calc. Require Export Rgeom. Require Export RList. Require Export Sqrt_reg. Require Export Ranalysis4. Require Export Rpower. Local Open Scope R_scope.Rexact R0. Qed. (**********) Ltac intro_hyp_glob trm := match constr:(trm) with | (?X1 + ?X2)%F => match goal with | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 | _ => idtac end | (?X1 - ?X2)%F => match goal with | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 | _ => idtac end | (?X1 * ?X2)%F => match goal with | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 | _ => idtac end | (?X1 / ?X2)%F => let aux := constr:(X2) in match goal with | _:(forall x0:R, aux x0 <> 0) |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 | _:(forall x0:R, aux x0 <> 0) |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 | |- (derivable _) => cut (forall x0:R, aux x0 <> 0); [ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ] | |- (continuity _) => cut (forall x0:R, aux x0 <> 0); [ intro; intro_hyp_glob X1; intro_hyp_glob X2 | try assumption ] | _ => idtac end | (comp ?X1 ?X2) => match goal with | |- (derivable _) => intro_hyp_glob X1; intro_hyp_glob X2 | |- (continuity _) => intro_hyp_glob X1; intro_hyp_glob X2 | _ => idtac end | (- ?X1)%F => match goal with | |- (derivable _) => intro_hyp_glob X1 | |- (continuity _) => intro_hyp_glob X1 | _ => idtac end | (/ ?X1)%F => let aux := constr:(X1) in match goal with | _:(forall x0:R, aux x0 <> 0) |- (derivable _) => intro_hyp_glob X1 | _:(forall x0:R, aux x0 <> 0) |- (continuity _) => intro_hyp_glob X1 | |- (derivable _) => cut (forall x0:R, aux x0 <> 0); [ intro; intro_hyp_glob X1 | try assumption ] | |- (continuity _) => cut (forall x0:R, aux x0 <> 0); [ intro; intro_hyp_glob X1 | try assumption ] | _ => idtac end | cos => idtac | sin => idtac | cosh => idtac | sinh => idtac | exp => idtac | Rsqr => idtac | sqrt => idtac | id => idtac | (fct_cte _) => idtac | (pow_fct _) => idtac | Rabs => idtac | ?X1 => let p := constr:(X1) in let HYPPD := fresh "HYPPD" in match goal with | _:(derivable p) |- _ => idtac | |- (derivable p) => idtac | |- (derivable _) => cut (True -> derivable p); [ intro HYPPD; cut (derivable p); [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] | idtac ] | _:(continuity p) |- _ => idtac | |- (continuity p) => idtac | |- (continuity _) => cut (True -> continuity p); [ intro HYPPD; cut (continuity p); [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] | idtac ] | _ => idtac end end. (**********) Ltac intro_hyp_pt trm pt := match constr:(trm) with | (?X1 + ?X2)%F => match goal with | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | _ => idtac end | (?X1 - ?X2)%F => match goal with | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | _ => idtac end | (?X1 * ?X2)%F => match goal with | |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | _ => idtac end | (?X1 / ?X2)%F => let aux := constr:(X2) in match goal with | _:(aux pt <> 0) |- (derivable_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | _:(aux pt <> 0) |- (continuity_pt _ _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | _:(aux pt <> 0) |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) => generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) => generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) => generalize (id pt); intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | |- (derivable_pt _ _) => cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] | |- (continuity_pt _ _) => cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] | |- (derive_pt _ _ _ = _) => cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt; intro_hyp_pt X2 pt | try assumption ] | _ => idtac end | (comp ?X1 ?X2) => match goal with | |- (derivable_pt _ _) => let pt_f1 := eval cbv beta in (X2 pt) in (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) | |- (continuity_pt _ _) => let pt_f1 := eval cbv beta in (X2 pt) in (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) | |- (derive_pt _ _ _ = _) => let pt_f1 := eval cbv beta in (X2 pt) in (intro_hyp_pt X1 pt_f1; intro_hyp_pt X2 pt) | _ => idtac end | (- ?X1)%F => match goal with | |- (derivable_pt _ _) => intro_hyp_pt X1 pt | |- (continuity_pt _ _) => intro_hyp_pt X1 pt | |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt | _ => idtac end | (/ ?X1)%F => let aux := constr:(X1) in match goal with | _:(aux pt <> 0) |- (derivable_pt _ _) => intro_hyp_pt X1 pt | _:(aux pt <> 0) |- (continuity_pt _ _) => intro_hyp_pt X1 pt | _:(aux pt <> 0) |- (derive_pt _ _ _ = _) => intro_hyp_pt X1 pt | id:(forall x0:R, aux x0 <> 0) |- (derivable_pt _ _) => generalize (id pt); intro; intro_hyp_pt X1 pt | id:(forall x0:R, aux x0 <> 0) |- (continuity_pt _ _) => generalize (id pt); intro; intro_hyp_pt X1 pt | id:(forall x0:R, aux x0 <> 0) |- (derive_pt _ _ _ = _) => generalize (id pt); intro; intro_hyp_pt X1 pt | |- (derivable_pt _ _) => cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] | |- (continuity_pt _ _) => cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] | |- (derive_pt _ _ _ = _) => cut (aux pt <> 0); [ intro; intro_hyp_pt X1 pt | try assumption ] | _ => idtac end | cos => idtac | sin => idtac | cosh => idtac | sinh => idtac | exp => idtac | Rsqr => idtac | id => idtac | (fct_cte _) => idtac | (pow_fct _) => idtac | sqrt => match goal with | |- (derivable_pt _ _) => cut (0 < pt); [ intro | try assumption ] | |- (continuity_pt _ _) => cut (0 <= pt); [ intro | try assumption ] | |- (derive_pt _ _ _ = _) => cut (0 < pt); [ intro | try assumption ] | _ => idtac end | Rabs => match goal with | |- (derivable_pt _ _) => cut (pt <> 0); [ intro | try assumption ] | _ => idtac end | ?X1 => let p := constr:(X1) in let HYPPD := fresh "HYPPD" in match goal with | _:(derivable_pt p pt) |- _ => idtac | |- (derivable_pt p pt) => idtac | |- (derivable_pt _ _) => cut (True -> derivable_pt p pt); [ intro HYPPD; cut (derivable_pt p pt); [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] | idtac ] | _:(continuity_pt p pt) |- _ => idtac | |- (continuity_pt p pt) => idtac | |- (continuity_pt _ _) => cut (True -> continuity_pt p pt); [ intro HYPPD; cut (continuity_pt p pt); [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] | idtac ] | |- (derive_pt _ _ _ = _) => cut (True -> derivable_pt p pt); [ intro HYPPD; cut (derivable_pt p pt); [ intro; clear HYPPD | apply HYPPD; clear HYPPD; trivial ] | idtac ] | _ => idtac end end. (**********) Ltac is_diff_pt := match goal with | |- (derivable_pt Rsqr _) => (* fonctions de base *) apply derivable_pt_Rsqr | |- (derivable_pt id ?X1) => apply (derivable_pt_id X1) | |- (derivable_pt (fct_cte _) _) => apply derivable_pt_const | |- (derivable_pt sin _) => apply derivable_pt_sin | |- (derivable_pt cos _) => apply derivable_pt_cos | |- (derivable_pt sinh _) => apply derivable_pt_sinh | |- (derivable_pt cosh _) => apply derivable_pt_cosh | |- (derivable_pt exp _) => apply derivable_pt_exp | |- (derivable_pt (pow_fct _) _) => unfold pow_fct in |- *; apply derivable_pt_pow | |- (derivable_pt sqrt ?X1) => apply (derivable_pt_sqrt X1); assumption || unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, comp, id, fct_cte, pow_fct in |- * | |- (derivable_pt Rabs ?X1) => apply (Rderivable_pt_abs X1); assumption || unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, comp, id, fct_cte, pow_fct in |- * (* regles de differentiabilite *) (* PLUS *) | |- (derivable_pt (?X1 + ?X2) ?X3) => apply (derivable_pt_plus X1 X2 X3); is_diff_pt (* MOINS *) | |- (derivable_pt (?X1 - ?X2) ?X3) => apply (derivable_pt_minus X1 X2 X3); is_diff_pt (* OPPOSE *) | |- (derivable_pt (- ?X1) ?X2) => apply (derivable_pt_opp X1 X2); is_diff_pt (* MULTIPLICATION PAR UN SCALAIRE *) | |- (derivable_pt (mult_real_fct ?X1 ?X2) ?X3) => apply (derivable_pt_scal X2 X1 X3); is_diff_pt (* MULTIPLICATION *) | |- (derivable_pt (?X1 * ?X2) ?X3) => apply (derivable_pt_mult X1 X2 X3); is_diff_pt (* DIVISION *) | |- (derivable_pt (?X1 / ?X2) ?X3) => apply (derivable_pt_div X1 X2 X3); [ is_diff_pt | is_diff_pt | try assumption || unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, comp, pow_fct, id, fct_cte in |- * ] | |- (derivable_pt (/ ?X1) ?X2) => (* INVERSION *) apply (derivable_pt_inv X1 X2); [ assumption || unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, comp, pow_fct, id, fct_cte in |- * | is_diff_pt ] | |- (derivable_pt (comp ?X1 ?X2) ?X3) => (* COMPOSITION *) apply (derivable_pt_comp X2 X1 X3); is_diff_pt | _:(derivable_pt ?X1 ?X2) |- (derivable_pt ?X1 ?X2) => assumption | _:(derivable ?X1) |- (derivable_pt ?X1 ?X2) => let HypDDPT := fresh "HypDDPT" in cut (derivable X1); [ intro HypDDPT; apply HypDDPT | assumption ] | |- (True -> derivable_pt _ _) => let HypTruE := fresh "HypTruE" in intro HypTruE; clear HypTruE; is_diff_pt | _ => try unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, fct_cte, comp, pow_fct in |- * end. (**********) Ltac is_diff_glob := match goal with | |- (derivable Rsqr) => (* fonctions de base *) apply derivable_Rsqr | |- (derivable id) => apply derivable_id | |- (derivable (fct_cte _)) => apply derivable_const | |- (derivable sin) => apply derivable_sin | |- (derivable cos) => apply derivable_cos | |- (derivable cosh) => apply derivable_cosh | |- (derivable sinh) => apply derivable_sinh | |- (derivable exp) => apply derivable_exp | |- (derivable (pow_fct _)) => unfold pow_fct in |- *; apply derivable_pow (* regles de differentiabilite *) (* PLUS *) | |- (derivable (?X1 + ?X2)) => apply (derivable_plus X1 X2); is_diff_glob (* MOINS *) | |- (derivable (?X1 - ?X2)) => apply (derivable_minus X1 X2); is_diff_glob (* OPPOSE *) | |- (derivable (- ?X1)) => apply (derivable_opp X1); is_diff_glob (* MULTIPLICATION PAR UN SCALAIRE *) | |- (derivable (mult_real_fct ?X1 ?X2)) => apply (derivable_scal X2 X1); is_diff_glob (* MULTIPLICATION *) | |- (derivable (?X1 * ?X2)) => apply (derivable_mult X1 X2); is_diff_glob (* DIVISION *) | |- (derivable (?X1 / ?X2)) => apply (derivable_div X1 X2); [ is_diff_glob | is_diff_glob | try assumption || unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, fct_cte, comp, pow_fct in |- * ] | |- (derivable (/ ?X1)) => (* INVERSION *) apply (derivable_inv X1); [ try assumption || unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, fct_cte, comp, pow_fct in |- * | is_diff_glob ] | |- (derivable (comp sqrt _)) => (* COMPOSITION *) unfold derivable in |- *; intro; try is_diff_pt | |- (derivable (comp Rabs _)) => unfold derivable in |- *; intro; try is_diff_pt | |- (derivable (comp ?X1 ?X2)) => apply (derivable_comp X2 X1); is_diff_glob | _:(derivable ?X1) |- (derivable ?X1) => assumption | |- (True -> derivable _) => let HypTruE := fresh "HypTruE" in intro HypTruE; clear HypTruE; is_diff_glob | _ => try unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, fct_cte, comp, pow_fct in |- * end. (**********) Ltac is_cont_pt := match goal with | |- (continuity_pt Rsqr _) => (* fonctions de base *) apply derivable_continuous_pt; apply derivable_pt_Rsqr | |- (continuity_pt id ?X1) => apply derivable_continuous_pt; apply (derivable_pt_id X1) | |- (continuity_pt (fct_cte _) _) => apply derivable_continuous_pt; apply derivable_pt_const | |- (continuity_pt sin _) => apply derivable_continuous_pt; apply derivable_pt_sin | |- (continuity_pt cos _) => apply derivable_continuous_pt; apply derivable_pt_cos | |- (continuity_pt sinh _) => apply derivable_continuous_pt; apply derivable_pt_sinh | |- (continuity_pt cosh _) => apply derivable_continuous_pt; apply derivable_pt_cosh | |- (continuity_pt exp _) => apply derivable_continuous_pt; apply derivable_pt_exp | |- (continuity_pt (pow_fct _) _) => unfold pow_fct in |- *; apply derivable_continuous_pt; apply derivable_pt_pow | |- (continuity_pt sqrt ?X1) => apply continuity_pt_sqrt; assumption || unfold plus_fct, minus_fct, opp_fct, mult_fct, div_fct, inv_fct, comp, id, fct_cte, pow_fct in |- * | |- (continuity_pt Rabs ?X1) => apply (Rcontinuity_abs X1) (* regles de differentiabilite *) (* PLUS *) | |- (continuity_pt (?X1 + ?X2) ?X3) => apply (continuity_pt_plus X1 X2 X3); is_cont_pt (* MOINS *) | |- (continuity_pt (?X1 - ?X2) ?X3) => apply (continuity_pt_minus X1 X2 X3); is_cont_pt (* OPPOSE *) | |- (continuity_pt (- ?X1) ?X2) => apply (continuity_pt_opp X1 X2); is_cont_pt (* MULTIPLICATION PAR UN SCALAIRE *) | |- (continuity_pt (mult_real_fct ?X1 ?X2) ?X3) => apply (continuity_pt_scal X2 X1 X3); is_cont_pt (* MULTIPLICATION *) | |- (continuity_pt (?X1 * ?X2) ?X3) => apply (continuity_pt_mult X1 X2 X3); is_cont_pt (* DIVISION *) | |- (continuity_pt (?X1 / ?X2) ?X3) => apply (continuity_pt_div X1 X2 X3); [ is_cont_pt | is_cont_pt | try assumption || unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, comp, id, fct_cte, pow_fct in |- * ] | |- (continuity_pt (/ ?X1) ?X2) => (* INVERSION *) apply (continuity_pt_inv X1 X2); [ is_cont_pt | assumption || unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, comp, id, fct_cte, pow_fct in |- * ] | |- (continuity_pt (comp ?X1 ?X2) ?X3) => (* COMPOSITION *) apply (continuity_pt_comp X2 X1 X3); is_cont_pt | _:(continuity_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) => assumption | _:(continuity ?X1) |- (continuity_pt ?X1 ?X2) => let HypDDPT := fresh "HypDDPT" in cut (continuity X1); [ intro HypDDPT; apply HypDDPT | assumption ] | _:(derivable_pt ?X1 ?X2) |- (continuity_pt ?X1 ?X2) => apply derivable_continuous_pt; assumption | _:(derivable ?X1) |- (continuity_pt ?X1 ?X2) => let HypDDPT := fresh "HypDDPT" in cut (continuity X1); [ intro HypDDPT; apply HypDDPT | apply derivable_continuous; assumption ] | |- (True -> continuity_pt _ _) => let HypTruE := fresh "HypTruE" in intro HypTruE; clear HypTruE; is_cont_pt | _ => try unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, fct_cte, comp, pow_fct in |- * end. (**********) Ltac is_cont_glob := match goal with | |- (continuity Rsqr) => (* fonctions de base *) apply derivable_continuous; apply derivable_Rsqr | |- (continuity id) => apply derivable_continuous; apply derivable_id | |- (continuity (fct_cte _)) => apply derivable_continuous; apply derivable_const | |- (continuity sin) => apply derivable_continuous; apply derivable_sin | |- (continuity cos) => apply derivable_continuous; apply derivable_cos | |- (continuity exp) => apply derivable_continuous; apply derivable_exp | |- (continuity (pow_fct _)) => unfold pow_fct in |- *; apply derivable_continuous; apply derivable_pow | |- (continuity sinh) => apply derivable_continuous; apply derivable_sinh | |- (continuity cosh) => apply derivable_continuous; apply derivable_cosh | |- (continuity Rabs) => apply Rcontinuity_abs (* regles de continuite *) (* PLUS *) | |- (continuity (?X1 + ?X2)) => apply (continuity_plus X1 X2); try is_cont_glob || assumption (* MOINS *) | |- (continuity (?X1 - ?X2)) => apply (continuity_minus X1 X2); try is_cont_glob || assumption (* OPPOSE *) | |- (continuity (- ?X1)) => apply (continuity_opp X1); try is_cont_glob || assumption (* INVERSE *) | |- (continuity (/ ?X1)) => apply (continuity_inv X1); try is_cont_glob || assumption (* MULTIPLICATION PAR UN SCALAIRE *) | |- (continuity (mult_real_fct ?X1 ?X2)) => apply (continuity_scal X2 X1); try is_cont_glob || assumption (* MULTIPLICATION *) | |- (continuity (?X1 * ?X2)) => apply (continuity_mult X1 X2); try is_cont_glob || assumption (* DIVISION *) | |- (continuity (?X1 / ?X2)) => apply (continuity_div X1 X2); [ try is_cont_glob || assumption | try is_cont_glob || assumption | try assumption || unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, fct_cte, pow_fct in |- * ] | |- (continuity (comp sqrt _)) => (* COMPOSITION *) unfold continuity_pt in |- *; intro; try is_cont_pt | |- (continuity (comp ?X1 ?X2)) => apply (continuity_comp X2 X1); try is_cont_glob || assumption | _:(continuity ?X1) |- (continuity ?X1) => assumption | |- (True -> continuity _) => let HypTruE := fresh "HypTruE" in intro HypTruE; clear HypTruE; is_cont_glob | _:(derivable ?X1) |- (continuity ?X1) => apply derivable_continuous; assumption | _ => try unfold plus_fct, mult_fct, div_fct, minus_fct, opp_fct, inv_fct, id, fct_cte, comp, pow_fct in |- * end. (**********) Ltac rew_term trm := match constr:(trm) with | (?X1 + ?X2) => let p1 := rew_term X1 with p2 := rew_term X2 in match constr:(p1) with | (fct_cte ?X3) => match constr:(p2) with | (fct_cte ?X4) => constr:(fct_cte (X3 + X4)) | _ => constr:((p1 + p2)%F) end | _ => constr:((p1 + p2)%F) end | (?X1 - ?X2) => let p1 := rew_term X1 with p2 := rew_term X2 in match constr:(p1) with | (fct_cte ?X3) => match constr:(p2) with | (fct_cte ?X4) => constr:(fct_cte (X3 - X4)) | _ => constr:((p1 - p2)%F) end | _ => constr:((p1 - p2)%F) end | (?X1 / ?X2) => let p1 := rew_term X1 with p2 := rew_term X2 in match constr:(p1) with | (fct_cte ?X3) => match constr:(p2) with | (fct_cte ?X4) => constr:(fct_cte (X3 / X4)) | _ => constr:((p1 / p2)%F) end | _ => match constr:(p2) with | (fct_cte ?X4) => constr:((p1 * fct_cte (/ X4))%F) | _ => constr:((p1 / p2)%F) end end | (?X1 * / ?X2) => let p1 := rew_term X1 with p2 := rew_term X2 in match constr:(p1) with | (fct_cte ?X3) => match constr:(p2) with | (fct_cte ?X4) => constr:(fct_cte (X3 / X4)) | _ => constr:((p1 / p2)%F) end | _ => match constr:(p2) with | (fct_cte ?X4) => constr:((p1 * fct_cte (/ X4))%F) | _ => constr:((p1 / p2)%F) end end | (?X1 * ?X2) => let p1 := rew_term X1 with p2 := rew_term X2 in match constr:(p1) with | (fct_cte ?X3) => match constr:(p2) with | (fct_cte ?X4) => constr:(fct_cte (X3 * X4)) | _ => constr:((p1 * p2)%F) end | _ => constr:((p1 * p2)%F) end | (- ?X1) => let p := rew_term X1 in match constr:(p) with | (fct_cte ?X2) => constr:(fct_cte (- X2)) | _ => constr:((- p)%F) end | (/ ?X1) => let p := rew_term X1 in match constr:(p) with | (fct_cte ?X2) => constr:(fct_cte (/ X2)) | _ => constr:((/ p)%F) end | (?X1 AppVar) => constr:(X1) | (?X1 ?X2) => let p := rew_term X2 in match constr:(p) with | (fct_cte ?X3) => constr:(fct_cte (X1 X3)) | _ => constr:(comp X1 p) end | AppVar => constr:(id) | (AppVar ^ ?X1) => constr:(pow_fct X1) | (?X1 ^ ?X2) => let p := rew_term X1 in match constr:(p) with | (fct_cte ?X3) => constr:(fct_cte (pow_fct X2 X3)) | _ => constr:(comp (pow_fct X2) p) end | ?X1 => constr:(fct_cte X1) end. (**********) Ltac deriv_proof trm pt := match constr:(trm) with | (?X1 + ?X2)%F => let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in constr:(derivable_pt_plus X1 X2 pt p1 p2) | (?X1 - ?X2)%F => let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in constr:(derivable_pt_minus X1 X2 pt p1 p2) | (?X1 * ?X2)%F => let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in constr:(derivable_pt_mult X1 X2 pt p1 p2) | (?X1 / ?X2)%F => match goal with | id:(?X2 pt <> 0) |- _ => let p1 := deriv_proof X1 pt with p2 := deriv_proof X2 pt in constr:(derivable_pt_div X1 X2 pt p1 p2 id) | _ => constr:(False) end | (/ ?X1)%F => match goal with | id:(?X1 pt <> 0) |- _ => let p1 := deriv_proof X1 pt in constr:(derivable_pt_inv X1 pt p1 id) | _ => constr:(False) end | (comp ?X1 ?X2) => let pt_f1 := eval cbv beta in (X2 pt) in let p1 := deriv_proof X1 pt_f1 with p2 := deriv_proof X2 pt in constr:(derivable_pt_comp X2 X1 pt p2 p1) | (- ?X1)%F => let p1 := deriv_proof X1 pt in constr:(derivable_pt_opp X1 pt p1) | sin => constr:(derivable_pt_sin pt) | cos => constr:(derivable_pt_cos pt) | sinh => constr:(derivable_pt_sinh pt) | cosh => constr:(derivable_pt_cosh pt) | exp => constr:(derivable_pt_exp pt) | id => constr:(derivable_pt_id pt) | Rsqr => constr:(derivable_pt_Rsqr pt) | sqrt => match goal with | id:(0 < pt) |- _ => constr:(derivable_pt_sqrt pt id) | _ => constr:(False) end | (fct_cte ?X1) => constr:(derivable_pt_const X1 pt) | ?X1 => let aux := constr:(X1) in match goal with | id:(derivable_pt aux pt) |- _ => constr:(id) | id:(derivable aux) |- _ => constr:(id pt) | _ => constr:(False) end end. (**********) Ltac simplify_derive trm pt := match constr:(trm) with | (?X1 + ?X2)%F => try rewrite derive_pt_plus; simplify_derive X1 pt; simplify_derive X2 pt | (?X1 - ?X2)%F => try rewrite derive_pt_minus; simplify_derive X1 pt; simplify_derive X2 pt | (?X1 * ?X2)%F => try rewrite derive_pt_mult; simplify_derive X1 pt; simplify_derive X2 pt | (?X1 / ?X2)%F => try rewrite derive_pt_div; simplify_derive X1 pt; simplify_derive X2 pt | (comp ?X1 ?X2) => let pt_f1 := eval cbv beta in (X2 pt) in (try rewrite derive_pt_comp; simplify_derive X1 pt_f1; simplify_derive X2 pt) | (- ?X1)%F => try rewrite derive_pt_opp; simplify_derive X1 pt | (/ ?X1)%F => try rewrite derive_pt_inv; simplify_derive X1 pt | (fct_cte ?X1) => try rewrite derive_pt_const | id => try rewrite derive_pt_id | sin => try rewrite derive_pt_sin | cos => try rewrite derive_pt_cos | sinh => try rewrite derive_pt_sinh | cosh => try rewrite derive_pt_cosh | exp => try rewrite derive_pt_exp | Rsqr => try rewrite derive_pt_Rsqr | sqrt => try rewrite derive_pt_sqrt | ?X1 => let aux := constr:(X1) in match goal with | id:(derive_pt aux pt ?X2 = _),H:(derivable aux) |- _ => try replace (derive_pt aux pt (H pt)) with (derive_pt aux pt X2); [ rewrite id | apply pr_nu ] | id:(derive_pt aux pt ?X2 = _),H:(derivable_pt aux pt) |- _ => try replace (derive_pt aux pt H) with (derive_pt aux pt X2); [ rewrite id | apply pr_nu ] | _ => idtac end | _ => idtac end. (**********) Ltac reg := match goal with | |- (derivable_pt ?X1 ?X2) => let trm := eval cbv beta in (X1 AppVar) in let aux := rew_term trm in (intro_hyp_pt aux X2; try (change (derivable_pt aux X2) in |- *; is_diff_pt) || is_diff_pt) | |- (derivable ?X1) => let trm := eval cbv beta in (X1 AppVar) in let aux := rew_term trm in (intro_hyp_glob aux; try (change (derivable aux) in |- *; is_diff_glob) || is_diff_glob) | |- (continuity ?X1) => let trm := eval cbv beta in (X1 AppVar) in let aux := rew_term trm in (intro_hyp_glob aux; try (change (continuity aux) in |- *; is_cont_glob) || is_cont_glob) | |- (continuity_pt ?X1 ?X2) => let trm := eval cbv beta in (X1 AppVar) in let aux := rew_term trm in (intro_hyp_pt aux X2; try (change (continuity_pt aux X2) in |- *; is_cont_pt) || is_cont_pt) | |- (derive_pt ?X1 ?X2 ?X3 = ?X4) => let trm := eval cbv beta in (X1 AppVar) in let aux := rew_term trm in intro_hyp_pt aux X2; (let aux2 := deriv_proof aux X2 in try (replace (derive_pt X1 X2 X3) with (derive_pt aux X2 aux2); [ simplify_derive aux X2; try unfold plus_fct, minus_fct, mult_fct, div_fct, id, fct_cte, inv_fct, opp_fct in |- *; ring || ring_simplify | try apply pr_nu ]) || is_diff_pt) end.R