Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Lra. Require Import Rbase. Require Import PSeries_reg. Require Import Rtrigo1. Require Import Ranalysis_reg. Require Import Rfunctions. Require Import AltSeries. Require Import Rseries. Require Import SeqProp. Require Import Ranalysis5. Require Import SeqSeries. Require Import PartSum. Require Import Omega. Local Open Scope R_scope.
Tools
forall x y : R, - x / y = - (x / y)intros x y; unfold Rdiv; rewrite <-Ropp_mult_distr_l_reverse; reflexivity. Qed.forall x y : R, - x / y = - (x / y)0 < / 2lra. Qed. Definition pos_half := mkposreal (/2) pos_half_prf.0 < / 2forall x : R, Boule (/ 2) pos_half x -> 0 <= x <= 1forall x : R, Boule (/ 2) pos_half x -> 0 <= x <= 1intros x b; apply Rabs_def2 in b; destruct b; split; lra. Qed.forall x : R, Rabs (x - / 2) < / 2 -> 0 <= x <= 1forall (c : R) (r : posreal) (x : R), Boule c r x -> Rabs x < Rabs c + rforall (c : R) (r : posreal) (x : R), Boule c r x -> Rabs x < Rabs c + rapply Rabs_def2 in h; destruct h; apply Rabs_def1; (destruct (Rle_lt_dec 0 c);[rewrite Rabs_pos_eq; lra | rewrite <- Rabs_Ropp, Rabs_pos_eq; lra]). Qed. (* The following lemma does not belong here. *)c:Rr:posrealx:Rh:Rabs (x - c) < rRabs x < Rabs c + rforall un vn : nat -> R, (forall n : nat, un n = vn n) -> forall l : R, Un_cv un l -> Un_cv vn lforall un vn : nat -> R, (forall n : nat, un n = vn n) -> forall l : R, Un_cv un l -> Un_cv vn lintro n; rewrite <- quv; apply Pn. Qed. (* The following two lemmas are general purposes about alternated series. They do not belong here. *)un, vn:nat -> Rquv:forall n : nat, un n = vn nl:RP:Un_cv un leps:Rep:eps > 0N:natPn:forall n : nat, (n >= N)%nat -> R_dist (un n) l < epsforall n : nat, (n >= N)%nat -> R_dist (vn n) l < epsforall (f : nat -> R) (l : R) (N n : nat), Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (N <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f Nforall (f : nat -> R) (l : R) (N n : nat), Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (N <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f Nf:nat -> Rl:Rforall N n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (N <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f Nf:nat -> Rl:Rforall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P nf:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P nforall N n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (N <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f Nforall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P nf:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P nforall N n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (N <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f Nf:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P nforall N n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (N <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f Nf:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P nforall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f kf:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0Npos:(0 < 0)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(0 <= n)%natR_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natR_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natR_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natUn_decreasing (fun i : nat => f (S N + i)%nat)f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k0 : nat, (0 < k0)%nat -> P k0) -> ((forall k0 : nat, (0 < k0)%nat -> P k0) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natk:natf (S (S N + k)) <= f (S N + k)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)Un_cv (fun i : nat => f (S N + i)%nat) 0f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (f n0) 0 < epsexists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> R_dist (f (S N + n0)%nat) 0 < epsf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsforall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n0) (l - sum_f_R0 (tg_alt f) N) < epsf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natR_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < epsf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropUf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%natUf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%natRabs (sum_f_R0 (tg_alt f) (n' + S N) - l) < eps -> Uf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%natRabs (sum_f_R0 (tg_alt f) N + sum_f_R0 (fun i : nat => tg_alt f (S N + i)) (n' + S N - S N) - l) < eps -> Uf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%nat(N < n' + S N)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%natt:forall a b c : R, a + b - c = b - (c - a)Rabs (sum_f_R0 (tg_alt f) N + sum_f_R0 (fun i : nat => tg_alt f (S N + i)) (n' + S N - S N) - l) < eps -> Uf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%nat(N < n' + S N)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natnM':(n' + S N >= M)%natRabs (sum_f_R0 (fun i : nat => tg_alt f (S N + i)) (n' + S N - S N) - (l - sum_f_R0 (tg_alt f) N)) < eps -> Rabs (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n' - (l - sum_f_R0 (tg_alt f) N)) < epsf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%nat(N < n' + S N)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natnM':(n' + S N >= M)%natRabs (sum_f_R0 (fun i : nat => tg_alt f (S N + i)) n' - (l - sum_f_R0 (tg_alt f) N)) < eps -> Rabs (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n' - (l - sum_f_R0 (tg_alt f) N)) < epsf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%nat(N < n' + S N)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natnM':(n' + S N >= M)%natRabs (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n' - (l - sum_f_R0 (tg_alt f) N)) < eps -> Rabs (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n' - (l - sum_f_R0 (tg_alt f) N)) < epsf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natnM':(n' + S N >= M)%natforall i : nat, (i <= n')%nat -> tg_alt (fun i0 : nat => (-1) ^ S N * f (S N + i0)%nat) i = tg_alt f (S N + i)f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%nat(N < n' + S N)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natnM':(n' + S N >= M)%natforall i : nat, (i <= n')%nat -> tg_alt (fun i0 : nat => (-1) ^ S N * f (S N + i0)%nat) i = tg_alt f (S N + i)f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%nat(N < n' + S N)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i0 : nat => f (S N + i0)%nat)to':Un_cv (fun i0 : nat => f (S N + i0)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natnM':(n' + S N >= M)%nati:nat(-1) ^ i * ((-1) ^ S N * f (S N + i)%nat) = (-1) ^ (S N + i) * f (S N + i)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%nat(N < n' + S N)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0eps:Rep:eps > 0M:natPM:forall n0 : nat, (n0 >= M)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l < epsn':natnM:(n' >= M)%natU:=R_dist (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n') (l - sum_f_R0 (tg_alt f) N) < eps:PropnM':(n' + S N >= M)%nat(N < n' + S N)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)forall n0 : nat, (-1) ^ S N * sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n0 = sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat)) n0f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (fun n0 : nat => (-1) ^ S N * sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n0) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n1 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n1N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i0 : nat => f (S N + i0)%nat)to':Un_cv (fun i0 : nat => f (S N + i0)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i0 : nat => (-1) ^ S N * f (S N + i0)%nat))) (l - sum_f_R0 (tg_alt f) N)n0, i:nattg_alt (fun i0 : nat => (-1) ^ S N * f (S N + i0)%nat) i * (-1) ^ S N = tg_alt (fun i0 : nat => f (S N + i0)%nat) if:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (fun n0 : nat => (-1) ^ S N * sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n0) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n1 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n1N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i0 : nat => f (S N + i0)%nat)to':Un_cv (fun i0 : nat => f (S N + i0)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i0 : nat => (-1) ^ S N * f (S N + i0)%nat))) (l - sum_f_R0 (tg_alt f) N)n0, i:nat(-1) ^ i * 1 * f (S N + i)%nat = (-1) ^ i * f (S N + i)%natf:nat -> Rl:RWLOG:forall (n1 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n1N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i0 : nat => f (S N + i0)%nat)to':Un_cv (fun i0 : nat => f (S N + i0)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i0 : nat => (-1) ^ S N * f (S N + i0)%nat))) (l - sum_f_R0 (tg_alt f) N)n0, i:nat1 = ((-1) ^ S N) ^ 2f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (fun n0 : nat => (-1) ^ S N * sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n0) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n1 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n1N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i0 : nat => f (S N + i0)%nat)to':Un_cv (fun i0 : nat => f (S N + i0)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i0 : nat => (-1) ^ S N * f (S N + i0)%nat))) (l - sum_f_R0 (tg_alt f) N)n0, i:nat1 = ((-1) ^ S N) ^ 2f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (fun n0 : nat => (-1) ^ S N * sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n0) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n1 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n1N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i0 : nat => f (S N + i0)%nat)to':Un_cv (fun i0 : nat => f (S N + i0)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i0 : nat => (-1) ^ S N * f (S N + i0)%nat))) (l - sum_f_R0 (tg_alt f) N)n0, i:nat1 = 1 ^ S Nf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (fun n0 : nat => (-1) ^ S N * sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n0) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (fun n0 : nat => (-1) ^ S N * sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat)) n0) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (fun _ : nat => (-1) ^ S N) ((-1) ^ S N)f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natR_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natneven:n = (2 * p')%natR_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natneven:n = (2 * p')%natR_dist (sum_f_R0 (tg_alt f) (2 * p')) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')R_dist (sum_f_R0 (tg_alt f) (2 * p')) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')sum_f_R0 (tg_alt f) (2 * p') - l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natsum_f_R0 (tg_alt f) (2 * p') - l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natt:(fun N0 : nat => sum_f_R0 (tg_alt f) (2 * N0)) p' <= (fun N0 : nat => sum_f_R0 (tg_alt f) (2 * N0)) psum_f_R0 (tg_alt f) (2 * p') - l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natt:(fun N0 : nat => sum_f_R0 (tg_alt f) (2 * N0)) p' <= (fun N0 : nat => sum_f_R0 (tg_alt f) (2 * N0)) psum_f_R0 (tg_alt f) (2 * p') - l <= sum_f_R0 (tg_alt f) (2 * p) - lf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natt:(fun N0 : nat => sum_f_R0 (tg_alt f) (2 * N0)) p' <= (fun N0 : nat => sum_f_R0 (tg_alt f) (2 * N0)) psum_f_R0 (tg_alt f) (2 * p) - l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natt:(fun N0 : nat => sum_f_R0 (tg_alt f) (2 * N0)) p' <= (fun N0 : nat => sum_f_R0 (tg_alt f) (2 * N0)) psum_f_R0 (tg_alt f) (2 * p) - l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')R_dist (sum_f_R0 (tg_alt f) (S (2 * p'))) l <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')l - sum_f_R0 (tg_alt f) (S (2 * p')) <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natl - sum_f_R0 (tg_alt f) (S (2 * p')) <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natl - sum_f_R0 (tg_alt f) (S (2 * p')) <= l - sum_f_R0 (tg_alt f) (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natl - sum_f_R0 (tg_alt f) (S (2 * p)) <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natsum_f_R0 (tg_alt f) (S (2 * p)) <= sum_f_R0 (tg_alt f) (S (2 * p'))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natl - sum_f_R0 (tg_alt f) (S (2 * p)) <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natl - sum_f_R0 (tg_alt f) (S (2 * p)) <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNeven:N = (2 * p)%natB:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * p)p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(p <= p')%natl + - sum_f_R0 (tg_alt f) (2 * p) + - tg_alt f (S (2 * p)) <= f (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S N)f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lR_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natR_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')R_dist (sum_f_R0 (tg_alt f) (2 * p')) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')sum_f_R0 (tg_alt f) (2 * p') - l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(S p < S p')%natsum_f_R0 (tg_alt f) (2 * p') - l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(S p < S p')%natsum_f_R0 (tg_alt f) (2 * p') - l <= sum_f_R0 (tg_alt f) (2 * S p) - lf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(S p < S p')%natsum_f_R0 (tg_alt f) (2 * S p) - l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(S p < S p')%nat(S p <= p')%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(S p < S p')%natsum_f_R0 (tg_alt f) (2 * S p) - l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(S p < S p')%natsum_f_R0 (tg_alt f) (2 * S p) - l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natneven:n = (2 * p')%natD:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')dist:(S p < S p')%natsum_f_R0 (tg_alt f) (S (2 * p)) + 1 * f (2 * S p)%nat - l <= f (2 * S p)%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')R_dist (sum_f_R0 (tg_alt f) n) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')R_dist (sum_f_R0 (tg_alt f) (S (2 * p'))) l <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')- (sum_f_R0 (tg_alt f) (S (2 * p')) - l) <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')l - sum_f_R0 (tg_alt f) (S (2 * p')) <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')l - sum_f_R0 (tg_alt f) (S (2 * p')) <= l - sum_f_R0 (tg_alt f) (S (2 * p))f:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')l - sum_f_R0 (tg_alt f) (S (2 * p)) <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')l - sum_f_R0 (tg_alt f) (S (2 * p)) <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')l <= sum_f_R0 (fun i : nat => (-1) ^ i * f i) (S (2 * p)) + (-1) ^ S (S (2 * p)) * f (S (S (2 * p))) -> l - sum_f_R0 (fun i : nat => (-1) ^ i * f i) (S (2 * p)) <= f (S (S (2 * p)))f:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')l <= sum_f_R0 (fun i : nat => (-1) ^ i * f i) (S (2 * p)) + 1 * f (2 * S p)%nat -> l - sum_f_R0 (fun i : nat => (-1) ^ i * f i) (S (2 * p)) <= f (2 * S p)%natf:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n0 : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n0N:natNpos:(0 < S N)%natn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lnN:(S N <= n)%natdecr':Un_decreasing (fun i : nat => f (S N + i)%nat)to':Un_cv (fun i : nat => f (S N + i)%nat) 0cv':Un_cv (sum_f_R0 (tg_alt (fun i : nat => (-1) ^ S N * f (S N + i)%nat))) (l - sum_f_R0 (tg_alt f) N)cv'':Un_cv (sum_f_R0 (tg_alt (fun i : nat => f (S N + i)%nat))) ((-1) ^ S N * (l - sum_f_R0 (tg_alt f) N))p:natNodd:N = S (2 * p)B:sum_f_R0 (tg_alt f) (S (2 * p)) <= lC:l <= sum_f_R0 (tg_alt f) (2 * S p)keep:(2 * S p)%nat = S (S (2 * p))p':natnodd:n = S (2 * p')D:sum_f_R0 (tg_alt f) (S (2 * p')) <= lE:l <= sum_f_R0 (tg_alt f) (2 * p')t:forall a b c : R, a <= b + 1 * c -> a - b <= cl <= sum_f_R0 (fun i : nat => (-1) ^ i * f i) (S (2 * p)) + 1 * f (2 * S p)%nat -> l - sum_f_R0 (fun i : nat => (-1) ^ i * f i) (S (2 * p)) <= f (2 * S p)%natf:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RWLOG:forall (n : nat) (P : nat -> Type), (forall k : nat, (0 < k)%nat -> P k) -> ((forall k : nat, (0 < k)%nat -> P k) -> P 0%nat) -> P n(forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f k) -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (0 <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f kdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lR_dist (sum_f_R0 (tg_alt f) 0) l <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lR_dist (sum_f_R0 (tg_alt f) (S n)) l <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f kdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lsum_f_R0 (tg_alt f) (S (2 * 0)) <= l <= sum_f_R0 (tg_alt f) (2 * 0) -> R_dist (sum_f_R0 (tg_alt f) 0) l <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lR_dist (sum_f_R0 (tg_alt f) (S n)) l <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f kdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lf 0%nat + -1 * f 1%nat <= l <= f 0%nat -> Rabs (f 0%nat - l) <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lR_dist (sum_f_R0 (tg_alt f) (S n)) l <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n)%nat -> R_dist (sum_f_R0 (tg_alt f) n) l <= f kdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lH:f 1%nat <= f 0%natf 0%nat + -1 * f 1%nat <= l <= f 0%nat -> Rabs (f 0%nat - l) <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lR_dist (sum_f_R0 (tg_alt f) (S n)) l <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lR_dist (sum_f_R0 (tg_alt f) (S n)) l <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lR_dist (sum_f_R0 (tg_alt f) (S n)) l <= f 1%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lf 1%nat <= f 0%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) l(1 <= S n)%natf:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lf 1%nat <= f 0%natsolve[apply decr]. Qed.f:nat -> Rl:RHyp:forall k : nat, (0 < k)%nat -> forall n0 : nat, Un_decreasing f -> Un_cv f 0 -> Un_cv (sum_f_R0 (tg_alt f)) l -> (k <= n0)%nat -> R_dist (sum_f_R0 (tg_alt f) n0) l <= f kn:natdecr:Un_decreasing fto0:Un_cv f 0cv:Un_cv (sum_f_R0 (tg_alt f)) lf 1%nat <= f 0%natforall (f : nat -> R -> R) (g : R -> R) (h : nat -> R) (c : R) (r : posreal), (forall x : R, Boule c r x -> Un_decreasing (fun n : nat => f n x)) -> (forall x : R, Boule c r x -> Un_cv (fun n : nat => f n x) 0) -> (forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)) -> (forall (x : R) (n : nat), Boule c r x -> f n x <= h n) -> Un_cv h 0 -> CVU (fun (N : nat) (x : R) => sum_f_R0 (tg_alt (fun i : nat => f i x)) N) g c rforall (f : nat -> R -> R) (g : R -> R) (h : nat -> R) (c : R) (r : posreal), (forall x : R, Boule c r x -> Un_decreasing (fun n : nat => f n x)) -> (forall x : R, Boule c r x -> Un_cv (fun n : nat => f n x) 0) -> (forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)) -> (forall (x : R) (n : nat), Boule c r x -> f n x <= h n) -> Un_cv h 0 -> CVU (fun (N : nat) (x : R) => sum_f_R0 (tg_alt (fun i : nat => f i x)) N) g c rf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n : nat => f n x)to0:forall x : R, Boule c r x -> Un_cv (fun n : nat => f n x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n : nat), Boule c r x -> f n x <= h nbound0:Un_cv h 0eps:Rep:0 < epsexists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule c r y -> Rabs (g y - sum_f_R0 (tg_alt (fun i : nat => f i y)) n) < epsf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n : nat => f n x)to0:forall x : R, Boule c r x -> Un_cv (fun n : nat => f n x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n : nat), Boule c r x -> f n x <= h nbound0:Un_cv h 0eps:Rep:0 < epsep':0 < eps / 2exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule c r y -> Rabs (g y - sum_f_R0 (tg_alt (fun i : nat => f i y)) n) < epsf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n : nat => f n x)to0:forall x : R, Boule c r x -> Un_cv (fun n : nat => f n x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n : nat), Boule c r x -> f n x <= h nbound0:Un_cv h 0eps:Rep:0 < epsep':0 < eps / 2N:natPn:forall n : nat, (n >= N)%nat -> R_dist (h n) 0 < epsforall (n : nat) (y : R), (N <= n)%nat -> Boule c r y -> Rabs (g y - sum_f_R0 (tg_alt (fun i : nat => f i y)) n) < epsf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n0 : nat => f n0 x)to0:forall x : R, Boule c r x -> Un_cv (fun n0 : nat => f n0 x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n0 : nat), Boule c r x -> f n0 x <= h n0bound0:Un_cv h 0eps:Rep:0 < epsep':0 < eps / 2N:natPn:forall n0 : nat, (n0 >= N)%nat -> R_dist (h n0) 0 < epsn:naty:RnN:(N <= n)%natdy:Boule c r yRabs (g y - sum_f_R0 (tg_alt (fun i : nat => f i y)) n) < epsf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n0 : nat => f n0 x)to0:forall x : R, Boule c r x -> Un_cv (fun n0 : nat => f n0 x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n0 : nat), Boule c r x -> f n0 x <= h n0bound0:Un_cv h 0eps:Rep:0 < epsep':0 < eps / 2N:natPn:forall n0 : nat, (n0 >= N)%nat -> R_dist (h n0) 0 < epsn:naty:RnN:(N <= n)%natdy:Boule c r yRabs (sum_f_R0 (tg_alt (fun i : nat => f i y)) n - g y) <= f n yf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n0 : nat => f n0 x)to0:forall x : R, Boule c r x -> Un_cv (fun n0 : nat => f n0 x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n0 : nat), Boule c r x -> f n0 x <= h n0bound0:Un_cv h 0eps:Rep:0 < epsep':0 < eps / 2N:natPn:forall n0 : nat, (n0 >= N)%nat -> R_dist (h n0) 0 < epsn:naty:RnN:(N <= n)%natdy:Boule c r yf n y < epsf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n0 : nat => f n0 x)to0:forall x : R, Boule c r x -> Un_cv (fun n0 : nat => f n0 x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n0 : nat), Boule c r x -> f n0 x <= h n0bound0:Un_cv h 0eps:Rep:0 < epsep':0 < eps / 2N:natPn:forall n0 : nat, (n0 >= N)%nat -> R_dist (h n0) 0 < epsn:naty:RnN:(N <= n)%natdy:Boule c r yf n y < epsf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n0 : nat => f n0 x)to0:forall x : R, Boule c r x -> Un_cv (fun n0 : nat => f n0 x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n0 : nat), Boule c r x -> f n0 x <= h n0bound0:Un_cv h 0eps:Rep:0 < epsep':0 < eps / 2N:natPn:forall n0 : nat, (n0 >= N)%nat -> R_dist (h n0) 0 < epsn:naty:RnN:(N <= n)%natdy:Boule c r yf n y <= h nf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n0 : nat => f n0 x)to0:forall x : R, Boule c r x -> Un_cv (fun n0 : nat => f n0 x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n0 : nat), Boule c r x -> f n0 x <= h n0bound0:Un_cv h 0eps:Rep:0 < epsep':0 < eps / 2N:natPn:forall n0 : nat, (n0 >= N)%nat -> R_dist (h n0) 0 < epsn:naty:RnN:(N <= n)%natdy:Boule c r yh n < epsf:nat -> R -> Rg:R -> Rh:nat -> Rc:Rr:posrealdecr:forall x : R, Boule c r x -> Un_decreasing (fun n0 : nat => f n0 x)to0:forall x : R, Boule c r x -> Un_cv (fun n0 : nat => f n0 x) 0to_g:forall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => f i x))) (g x)bound:forall (x : R) (n0 : nat), Boule c r x -> f n0 x <= h n0bound0:Un_cv h 0eps:Rep:0 < epsep':0 < eps / 2N:natPn:forall n0 : nat, (n0 >= N)%nat -> R_dist (h n0) 0 < epsn:naty:RnN:(N <= n)%natdy:Boule c r yh n < epsh:nat -> Reps:RN:natPn:forall n0 : nat, (n0 >= N)%nat -> R_dist (h n0) 0 < epsn:natnN:(N <= n)%nath n < epsapply Rabs_def2 in t; tauto. Qed. (* The following lemmas are general purpose lemmas about squares. They do not belong here *)h:nat -> Reps:RN:natPn:forall n0 : nat, (n0 >= N)%nat -> R_dist (h n0) 0 < epsn:natnN:(N <= n)%natt:Rabs (h n) < epsh n < epsforall x : R, 0 <= x ^ 2forall x : R, 0 <= x ^ 2x:Rr:0 <= x0 <= x ^ 2x:Rr:x < 00 <= x ^ 2x:Rr:0 <= x0 <= x * xx:Rr:x < 00 <= x ^ 2x:Rr:x < 00 <= x ^ 2apply Rmult_le_pos; lra. Qed.x:Rr:x < 00 <= - x * - xforall x : R, Rabs x ^ 2 = x ^ 2forall x : R, Rabs x ^ 2 = x ^ 2x:Rr:0 <= xRabs x ^ 2 = x ^ 2x:Rr:x < 0Rabs x ^ 2 = x ^ 2rewrite <- Rabs_Ropp, Rabs_pos_eq;[field | lra]. Qed.x:Rr:x < 0Rabs x ^ 2 = x ^ 2
forall x : R, - PI / 2 < x < PI / 2 -> derivable_pt tan xforall x : R, - PI / 2 < x < PI / 2 -> derivable_pt tan xx:Rxint:- PI / 2 < x < PI / 2derivable_pt tan xx:Rxint:- PI / 2 < x < PI / 2{l : R | derivable_pt_abs (fun x0 : R => sin x0 / cos x0) x l}x:Rxint:- PI / 2 < x < PI / 2cos x <> 0unfold Rgt ; apply cos_gt_0; [unfold Rdiv; rewrite <- Ropp_mult_distr_l_reverse; fold (-PI/2) |];tauto. Qed.x:Rxint:- PI / 2 < x < PI / 2cos x > 0forall (x : R) (Pr1 : - PI / 2 < x < PI / 2), derive_pt tan x (derivable_pt_tan x Pr1) = 1 + tan x ^ 2forall (x : R) (Pr1 : - PI / 2 < x < PI / 2), derive_pt tan x (derivable_pt_tan x Pr1) = 1 + tan x ^ 2x:Rpr:- PI / 2 < x < PI / 2derive_pt tan x (derivable_pt_tan x pr) = 1 + tan x ^ 2x:Rpr:- PI / 2 < x < PI / 2cos x <> 0x:Rpr:- PI / 2 < x < PI / 2H:cos x <> 0derive_pt tan x (derivable_pt_tan x pr) = 1 + tan x ^ 2unfold tan; reg; unfold pow, Rsqr; field; assumption. Qed.x:Rpr:- PI / 2 < x < PI / 2H:cos x <> 0derive_pt tan x (derivable_pt_tan x pr) = 1 + tan x ^ 2
Proof that tangent is a bijection
(* to be removed? *)forall (a b : R) (f : R -> R), a < b -> forall pr : forall x : R, a < x < b -> derivable_pt f x, (forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)) -> forall x y : R, a < x < b -> a < y < b -> x < y -> f x < f yforall (a b : R) (f : R -> R), a < b -> forall pr : forall x : R, a < x < b -> derivable_pt f x, (forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)) -> forall x y : R, a < x < b -> a < y < b -> x < y -> f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yforall c : R, x < c < y -> derivable_pt id ca, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cforall c : R, x < c < y -> derivable_pt f ca, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0c:Rc_encad:x < c < yderivable_pt f ca, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0c:Rc_encad:x < c < ya < c < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0c:Rc_encad:x < c < ya < ca, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0c:Rc_encad:x < c < yc < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0c:Rc_encad:x < c < yc < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cforall c : R, x <= c <= y -> continuity_pt f ca, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf_cont_interv:forall c : R, x <= c <= y -> continuity_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0c:Rc_encad:x <= c <= ya < c < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf_cont_interv:forall c : R, x <= c <= y -> continuity_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0c:Rc_encad:x <= c <= ya < ca, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0c:Rc_encad:x <= c <= yc < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf_cont_interv:forall c : R, x <= c <= y -> continuity_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0c:Rc_encad:x <= c <= yc < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf_cont_interv:forall c : R, x <= c <= y -> continuity_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf_cont_interv:forall c : R, x <= c <= y -> continuity_pt f cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf_cont_interv:forall c : R, x <= c <= y -> continuity_pt f cforall c : R, x <= c <= y -> continuity_pt id ca, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf_cont_interv:forall c : R, x <= c <= y -> continuity_pt f cid_cont_interv:forall c : R, x <= c <= y -> continuity_pt id cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf_cont_interv:forall c : R, x <= c <= y -> continuity_pt f cid_cont_interv:forall c : R, x <= c <= y -> continuity_pt id cf x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c : R, x < c < y -> derivable_pt id cderivable_f_interv:forall c : R, x < c < y -> derivable_pt f cf_cont_interv:forall c : R, x <= c <= y -> continuity_pt f cid_cont_interv:forall c : R, x <= c <= y -> continuity_pt id cforall x0 : R, (exists P : x < x0 < y, (id y - id x) * derive_pt f x0 (derivable_f_interv x0 P) = (f y - f x) * derive_pt id x0 (derivable_id_interv x0 P)) -> f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(id y - id x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1f y - f x > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xf y - f x > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f x(y - x) * derive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xy - x > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xa <= c < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xa <= ca, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < ba < c < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bc_encad:a < c < bderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < ba < ca, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bc < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bc_encad:a < c < bderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bc < ba, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bc_encad:a < c < bderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bc_encad:a < c < bderive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bc_encad:a < c < bTemp:0 < derive_pt f c (pr c c_encad)derive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = f y - f xc_encad2:a <= c < bc_encad:a < c < bTemp:0 < derive_pt f c (pr c c_encad)Temp2:derive_pt f c (derivable_f_interv c Pr) = derive_pt f c (pr c c_encad)derive_pt f c (derivable_f_interv c Pr) > 0a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * 1Hyp:f y - f x > 0f x < f ya, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)symmetry ; rewrite derive_pt_eq ; apply derivable_pt_lim_id. Qed. (* begin hide *)a, b:Rf:R -> Ra_lt_b:a < bpr:forall x0 : R, a < x0 < b -> derivable_pt f x0Df_gt_0:forall (t : R) (t_encad : a < t < b), 0 < derive_pt f t (pr t t_encad)x, y:Rx_encad:a < x < by_encad:a < y < bx_lt_y:x < yderivable_id_interv:forall c0 : R, x < c0 < y -> derivable_pt id c0derivable_f_interv:forall c0 : R, x < c0 < y -> derivable_pt f c0f_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt f c0id_cont_interv:forall c0 : R, x <= c0 <= y -> continuity_pt id c0c:RPr:x < c < yeq:(y - x) * derive_pt f c (derivable_f_interv c Pr) = (f y - f x) * derive_pt id c (derivable_id_interv c Pr)1 = derive_pt id c (derivable_id_interv c Pr)forall x : R, 1 + x ^ 2 > 0forall x : R, 1 + x ^ 2 > 0m:R1 + m ^ 2 > 0m:R1 + m ^ 2 > 0 + 0m:R1 > 0m:Rm ^ 2 >= 0m:Rm ^ 2 >= 0m:Rs':{m < 0} + {m = 0}m ^ 2 >= 0m:Rs':m > 0m ^ 2 >= 0m:Rs':{m < 0} + {m = 0}m < 0 -> m ^ 2 >= 0m:Rs':{m < 0} + {m = 0}m = 0 -> m ^ 2 >= 0m:Rs':m > 0m ^ 2 >= 0m:Rs':{m < 0} + {m = 0}m_cond:m < 0m ^ 2 >= 0m:Rs':{m < 0} + {m = 0}m = 0 -> m ^ 2 >= 0m:Rs':m > 0m ^ 2 >= 0m:Rs':{m < 0} + {m = 0}m_cond:m < 0m ^ 2 >= 0 * 0m:Rs':{m < 0} + {m = 0}m = 0 -> m ^ 2 >= 0m:Rs':m > 0m ^ 2 >= 0m:Rs':{m < 0} + {m = 0}m_cond:m < 0(- m) ^ 2 >= 0 * 0m:Rs':{m < 0} + {m = 0}m_cond:m < 0(- m) ^ 2 = m ^ 2m:Rs':{m < 0} + {m = 0}m = 0 -> m ^ 2 >= 0m:Rs':m > 0m ^ 2 >= 0m:Rs':{m < 0} + {m = 0}m_cond:m < 0(- m) ^ 2 = m ^ 2m:Rs':{m < 0} + {m = 0}m = 0 -> m ^ 2 >= 0m:Rs':m > 0m ^ 2 >= 0m:Rs':{m < 0} + {m = 0}m = 0 -> m ^ 2 >= 0m:Rs':m > 0m ^ 2 >= 0m:Rs':m > 0m ^ 2 >= 0intuition. Qed. (* end hide *) (* The following lemmas about PI should probably be in Rtrigo. *)m:Rs':m > 0m ^ 2 > 0forall x : R, 0 < x < 2 -> 0 < cos x -> x < PI / 2forall x : R, 0 < x < 2 -> 0 < cos x -> x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xx < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxltpi2:x < PI / 2x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxeqpi2:x = PI / 2x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxeqpi2:x = PI / 2x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2c:RPc:cos x - cos (PI / 2) = derive_pt cos c (derivable_cos c) * (x - PI / 2)cint1:PI / 2 < ccint2:c < xx < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2c:Rcint1:PI / 2 < ccint2:c < xcos x = derive_pt cos c (derivable_cos c) * (x - PI / 2) -> x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2c:Rcint1:PI / 2 < ccint2:c < xcos x = - sin c * (x - PI / 2) -> x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2c:Rcint1:PI / 2 < ccint2:c < xH:0 < c < 2cos x = - sin c * (x - PI / 2) -> x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2c:Rcint1:PI / 2 < ccint2:c < xH:0 < c < 2H0:0 < sin ccos x = - sin c * (x - PI / 2) -> x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2c:Rcint1:PI / 2 < ccint2:c < xH:0 < c < 2H0:0 < sin cPc:cos x = - sin c * (x - PI / 2)x < PI / 2x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2c:Rcint1:PI / 2 < ccint2:c < xH:0 < c < 2H0:0 < sin cPc:cos x = - sin c * (x - PI / 2)cos x <= 0apply Rle_minus, Rmult_le_pos;[apply Rlt_le; assumption | lra ]. Qed.x:Rxp:0 < xxlt2:x < 2cx:0 < cos xxgtpi2:x > PI / 2c:Rcint1:PI / 2 < ccint2:c < xH:0 < c < 2H0:0 < sin cPc:cos x = - sin c * (x - PI / 2)0 + - (sin c * (x - PI / 2)) <= 03 / 2 < PI / 23 / 2 < PI / 20 < cos (3 / 2)t:cos_approx (3 / 2) (2 * 1 + 1) <= cos (3 / 2)0 < cos (3 / 2)0 < cos_approx (3 / 2) (2 * 1 + 1)0 < (-1) ^ 0 * ((3 / 2) ^ (2 * 0) / INR (fact (2 * 0))) + (-1) ^ 1 * ((3 / 2) ^ (2 * 1) / INR (fact (2 * 1))) + (-1) ^ 2 * ((3 / 2) ^ (2 * 2) / INR (fact (2 * 2))) + (-1) ^ 3 * ((3 / 2) ^ (2 * 3) / INR (fact (2 * 3)))0 < (-1) ^ 0 * ((3 / 2) ^ (2 * 0) / IZR (Z.of_nat (fact (2 * 0)))) + (-1) ^ 1 * ((3 / 2) ^ (2 * 1) / IZR (Z.of_nat (fact (2 * 1)))) + (-1) ^ 2 * ((3 / 2) ^ (2 * 2) / IZR (Z.of_nat (fact (2 * 2)))) + (-1) ^ 3 * ((3 / 2) ^ (2 * 3) / IZR (Z.of_nat (fact (2 * 3))))0 < 1 * (1 / 1) + -1 * 1 * (3 / 2 * (3 / 2 * 1) / 2) + -1 * (-1 * 1) * (3 / 2 * (3 / 2 * (3 / 2 * (3 / 2 * 1))) / 24) + -1 * (-1 * (-1 * 1)) * (3 / 2 * (3 / 2 * (3 / 2 * (3 / 2 * (3 / 2 * (3 / 2 * 1))))) / 720)apply Rdiv_lt_0_compat ; now apply IZR_lt. Qed.0 < 9925632 / 1415577601 < PI / 2assert (t := PI2_3_2); lra. Qed.1 < PI / 2forall x y : R, - PI / 2 < x -> x < y -> y < PI / 2 -> tan x < tan yforall x y : R, - PI / 2 < x -> x < y -> y < PI / 2 -> tan x < tan yx, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2tan x < tan yx, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2- PI / 2 < x < PI / 2x, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2x_encad:- PI / 2 < x < PI / 2tan x < tan yx, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2x_encad:- PI / 2 < x < PI / 2tan x < tan yx, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2x_encad:- PI / 2 < x < PI / 2- PI / 2 < y < PI / 2x, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2x_encad:- PI / 2 < x < PI / 2y_encad:- PI / 2 < y < PI / 2tan x < tan yx, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2x_encad:- PI / 2 < x < PI / 2y_encad:- PI / 2 < y < PI / 2tan x < tan yx, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2x_encad:- PI / 2 < x < PI / 2y_encad:- PI / 2 < y < PI / 2forall x0 : R, - PI / 2 < x0 < PI / 2 -> derivable_pt tan x0x, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2x_encad:- PI / 2 < x < PI / 2y_encad:- PI / 2 < y < PI / 2local_derivable_pt_tan:forall x0 : R, - PI / 2 < x0 < PI / 2 -> derivable_pt tan x0tan x < tan yx, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2x_encad:- PI / 2 < x < PI / 2y_encad:- PI / 2 < y < PI / 2local_derivable_pt_tan:forall x0 : R, - PI / 2 < x0 < PI / 2 -> derivable_pt tan x0tan x < tan yx, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2local_derivable_pt_tan:forall x0 : R, - PI / 2 < x0 < PI / 2 -> derivable_pt tan x0H:- PI / 2 < xH0:x < PI / 2H1:- PI / 2 < yH2:y < PI / 2- PI / 2 < PI / 2x, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2local_derivable_pt_tan:forall x0 : R, - PI / 2 < x0 < PI / 2 -> derivable_pt tan x0H:- PI / 2 < xH0:x < PI / 2H1:- PI / 2 < yH2:y < PI / 2t:Rt_encad:- PI / 2 < t < PI / 20 < derive_pt tan t (local_derivable_pt_tan t t_encad)x, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2local_derivable_pt_tan:forall x0 : R, - PI / 2 < x0 < PI / 2 -> derivable_pt tan x0H:- PI / 2 < xH0:x < PI / 2H1:- PI / 2 < yH2:y < PI / 2t:Rt_encad:- PI / 2 < t < PI / 20 < derive_pt tan t (local_derivable_pt_tan t t_encad)x, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2local_derivable_pt_tan:forall x0 : R, - PI / 2 < x0 < PI / 2 -> derivable_pt tan x0H:- PI / 2 < xH0:x < PI / 2H1:- PI / 2 < yH2:y < PI / 2t:Rt_encad:- PI / 2 < t < PI / 20 < derive_pt tan t (derivable_pt_tan t t_encad)apply plus_Rsqr_gt_0. Qed.x, y:RZ_le_x:- PI / 2 < xx_lt_y:x < yy_le_1:y < PI / 2local_derivable_pt_tan:forall x0 : R, - PI / 2 < x0 < PI / 2 -> derivable_pt tan x0H:- PI / 2 < xH0:x < PI / 2H1:- PI / 2 < yH2:y < PI / 2t:Rt_encad:- PI / 2 < t < PI / 20 < 1 + tan t ^ 2forall x y : R, - PI / 2 < x < PI / 2 -> - PI / 2 < y < PI / 2 -> tan x = tan y -> x = yforall x y : R, - PI / 2 < x < PI / 2 -> - PI / 2 < y < PI / 2 -> tan x = tan y -> x = ya, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan b{a < b} + {a = b} -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba > b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba < b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba = b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba > b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan bHf:a < ba = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba = b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba > b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan bHf:a < bHfalse:tan a < tan ba = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba = b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba > b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba = b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba > b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan ba > b -> a = ba, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan bHf:a > ba = bcase (Rlt_not_eq (tan b) (tan a)) ; [|symmetry] ; assumption. Qed.a, b:Ra_encad:- PI / 2 < a < PI / 2b_encad:- PI / 2 < b < PI / 2fa_eq_fb:tan a = tan bHf:a > bHfalse:tan b < tan aa = bforall lb ub y : R, lb < ub -> - PI / 2 < lb -> ub < PI / 2 -> tan lb < y < tan ub -> {x : R | lb < x < ub /\ tan x = y}forall lb ub y : R, lb < ub -> - PI / 2 < lb -> ub < PI / 2 -> tan lb < y < tan ub -> {x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan ub{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ub{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubforall a : R, lb <= a <= ub -> continuity_pt tan alb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan uba:Ra_encad:lb <= a <= ubcontinuity_pt tan alb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan uba:Ra_encad:lb <= a <= ub- PI / 2 < a < PI / 2lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan uba:Ra_encad:lb <= a <= ub- PI / 2 < alb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan uba:Ra_encad:lb <= a <= uba < PI / 2lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan uba:Ra_encad:lb <= a <= uba < PI / 2lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aforall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) alb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubcontinuity_pt (fun x : R => tan x - y) alb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubforall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alp -> Rabs (tan x - y - (tan a - y)) < eps)lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alp -> Rabs (tan x - y - (tan a - y)) < eps)lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0forall x : R, x > 0 /\ (forall x0 : Base R_met, D_x no_cond a x0 /\ dist R_met x0 a < x -> dist R_met (tan x0) (tan a) < eps) -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond a x0 /\ Rabs (x0 - a) < alp -> Rabs (tan x0 - y - (tan a - y)) < eps)lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0alpha:Ralpha_pos:alpha > 0 /\ (forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (tan x) (tan a) < eps)exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alp -> Rabs (tan x - y - (tan a - y)) < eps)lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0alpha:Ralpha_pos:alpha > 0Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (tan x) (tan a) < epsexists alp : R, alp > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alp -> Rabs (tan x - y - (tan a - y)) < eps)lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0alpha:Ralpha_pos:alpha > 0Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (tan x) (tan a) < epsalpha > 0 /\ (forall x : R, D_x no_cond a x /\ Rabs (x - a) < alpha -> Rabs (tan x - y - (tan a - y)) < eps)lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0alpha:Ralpha_pos:alpha > 0Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (tan x) (tan a) < epsalpha > 0lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0alpha:Ralpha_pos:alpha > 0Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (tan x) (tan a) < epsforall x : R, D_x no_cond a x /\ Rabs (x - a) < alpha -> Rabs (tan x - y - (tan a - y)) < epslb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0alpha:Ralpha_pos:alpha > 0Temp:forall x : Base R_met, D_x no_cond a x /\ dist R_met x a < alpha -> dist R_met (tan x) (tan a) < epsforall x : R, D_x no_cond a x /\ Rabs (x - a) < alpha -> Rabs (tan x - y - (tan a - y)) < epslb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0alpha:Ralpha_pos:alpha > 0Temp:forall x0 : Base R_met, D_x no_cond a x0 /\ dist R_met x0 a < alpha -> dist R_met (tan x0) (tan a) < epsx:Rx_cond:D_x no_cond a x /\ Rabs (x - a) < alphaRabs (tan x - y - (tan a - y)) < epslb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a0 : R, lb <= a0 <= ub -> continuity_pt tan a0a:Ra_encad:lb <= a <= ubeps:Reps_pos:eps > 0alpha:Ralpha_pos:alpha > 0Temp:forall x0 : Base R_met, D_x no_cond a x0 /\ dist R_met x0 a < alpha -> dist R_met (tan x0) (tan a) < epsx:Rx_cond:D_x no_cond a x /\ Rabs (x - a) < alphaRabs (tan x - tan a) < epslb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) a{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) atan lb - y < 0lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) aH1:(fun x : R => tan x - y) lb < 0{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) atan lb < ylb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) aH1:(fun x : R => tan x - y) lb < 0{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) aH1:(fun x : R => tan x - y) lb < 0{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) aH1:(fun x : R => tan x - y) lb < 00 < tan ub - ylb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) aH1:(fun x : R => tan x - y) lb < 0H2:0 < (fun x : R => tan x - y) ub{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) aH1:(fun x : R => tan x - y) lb < 0tan ub > ylb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) aH1:(fun x : R => tan x - y) lb < 0H2:0 < (fun x : R => tan x - y) ub{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x : R => tan x - y) aH1:(fun x : R => tan x - y) lb < 0H2:0 < (fun x : R => tan x - y) ub{x : R | lb < x < ub /\ tan x = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:(fun x0 : R => tan x0 - y) lb < 0H2:0 < (fun x0 : R => tan x0 - y) ubx:RHx:lb <= x <= ub /\ tan x - y = 0{x0 : R | lb < x0 < ub /\ tan x0 = y}lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:(fun x0 : R => tan x0 - y) lb < 0H2:0 < (fun x0 : R => tan x0 - y) ubx:RHx:lb <= x <= ub /\ tan x - y = 0lb < x < ub /\ tan x = ylb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad:tan lb < y < tan uby_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:(fun x0 : R => tan x0 - y) lb < 0H2:0 < (fun x0 : R => tan x0 - y) ubx:RHyp:lb <= x <= ubResult:tan x - y = 0lb < x < ub /\ tan x = ylb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ublb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx <> lblb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp2:x <> lblb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = lbFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp2:x <> lblb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan lb - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = lbFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp2:x <> lblb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan lb - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = lby <> tan lblb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan lb - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = lbTemp2:y <> tan lbFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp2:x <> lblb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan lb - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = lbTemp2:y <> tan lbFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp2:x <> lblb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, y:RResult:tan lb - y = 0Temp2:y <> tan lbFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp2:x <> lblb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, y:RResult:tan lb - y = 0Temp2:y <> tan lby = tan lblb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp2:x <> lblb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp2:x <> lblb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, x:RH3:lb <= xTemp2:x <> lblb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, x:RH3:lb <= xTemp2:x = lb -> FalseH:lb = xlb < xlb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubx <> ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp:x <> ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = ubFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp:x <> ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan ub - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = ubFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp:x <> ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan ub - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = uby <> tan ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan ub - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = ubTemp2:y <> tan ubFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp:x <> ubx < ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan ub - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubHfalse:x = ubTemp2:y <> tan ubFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp:x <> ubx < ubub, y:RResult:tan ub - y = 0Temp2:y <> tan ubFalselb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp:x <> ubx < ubub, y:RResult:tan ub - y = 0Temp2:y <> tan uby = tan ublb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp:x <> ubx < ubcase H4 ; intuition. Qed.lb, ub, y:Rlb_lt_ub:lb < ublb_cond:- PI / 2 < lbub_cond:ub < PI / 2y_encad1:tan lb < yy_encad2:y < tan ubf_cont:forall a : R, lb <= a <= ub -> continuity_pt tan aCont:forall a : R, lb <= a <= ub -> continuity_pt (fun x0 : R => tan x0 - y) aH1:tan lb - y < 0H2:0 < tan ub - yx:RResult:tan x - y = 0H:tan lb < yH0:y < tan ubH3:lb <= xH4:x <= ubTemp:x <> ubx < ub
tan 1 > 1tan 1 > 1H:0 < cos 1tan 1 > 1H:0 < cos 1cos 1 <= 1 - 1 / 2 + 1 / 24H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24tan 1 > 1H:0 < cos 1cos 1 <= cos_approx 1 (2 * (0 + 1)) -> cos 1 <= 1 - 1 / 2 + 1 / 24H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24tan 1 > 1H:0 < cos 1t:cos 1 <= 1 * (1 / 1) + -1 * 1 * (1 * (1 * 1) / (1 + 1)) + -1 * (-1 * 1) * (1 * (1 * (1 * (1 * 1))) / (... + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1))1 * (1 / 1) + -1 * 1 * (1 * (1 * 1) / (1 + 1)) + -1 * (-1 * 1) * (1 * (1 * (1 * (1 * 1))) / (... + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)) <= 1 - 1 / 2 + 1 / 24H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24tan 1 > 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24tan 1 > 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 241 - 1 / 6 <= sin 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t2:1 - 1 / 6 <= sin 1tan 1 > 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24sin_approx 1 (2 * 0 + 1) <= sin 1 -> 1 - 1 / 6 <= sin 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t2:1 - 1 / 6 <= sin 1tan 1 > 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t:1 * (1 * 1 / 1) + -1 * 1 * (1 * (1 * (1 * 1)) / (1 + 1 + 1 + 1 + 1 + 1)) <= sin 11 - 1 / 6 <= 1 * (1 * 1 / 1) + -1 * 1 * (1 * (1 * (1 * 1)) / (1 + 1 + 1 + 1 + 1 + 1))H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t2:1 - 1 / 6 <= sin 1tan 1 > 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t2:1 - 1 / 6 <= sin 1tan 1 > 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t2:1 - 1 / 6 <= sin 1tan 1 > cos 1 / cos 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t2:1 - 1 / 6 <= sin 10 < / cos 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t2:1 - 1 / 6 <= sin 1cos 1 < sin 1H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t2:1 - 1 / 6 <= sin 1cos 1 < sin 1lra. Qed.H:0 < cos 1t1:cos 1 <= 1 - 1 / 2 + 1 / 24t2:1 - 1 / 6 <= sin 11 - 1 / 2 + 1 / 24 < 1 - 1 / 6y:R{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:R{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHs:{Rabs y < 1} + {Rabs y = 1}{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHs:{Rabs y < 1} + {Rabs y = 1}yle1:Rabs y <= 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:Ryle1:Rabs y <= 1Rabs y < tan 1y:RHgt:Rabs y > 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 10 < / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1){x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1){x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):R{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):R0 < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < u{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < u{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < u/ (Rabs y + 1) < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < u0 < Rabs y + 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < u/ (Rabs y + 1) * (Rabs y + 1) < 1 * (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < u/ (Rabs y + 1) * (Rabs y + 1) < 1 * (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1u < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1u < / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1/ (Rabs y + 1) < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1u < / (Rabs y + 1) / 2 + / (Rabs y + 1) / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1/ (Rabs y + 1) < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1t:forall x : R, 0 < x -> x < x + xu < / (Rabs y + 1) / 2 + / (Rabs y + 1) / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1/ (Rabs y + 1) < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1t:forall x : R, 0 < x -> x < x + x0 < / (Rabs y + 1) / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1/ (Rabs y + 1) < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1/ (Rabs y + 1) < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 10 < PI / 2 - u < PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 10 < PI / 2 - uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1PI / 2 - u < PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1PI / 2 - u < PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1dumb:forall x y0 : R, 0 < y0 -> x - y0 < xPI / 2 - u < PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2{x : R | 0 < x < PI / 2 /\ Rabs y < tan x}y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 20 < PI / 2 - u < PI / 2 /\ Rabs y < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < x0 < PI / 2 - u < PI / 2 /\ Rabs y < tan (PI / 2 - u)x, y:Rx0:0 < xy1:y < 1x * y < x * 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < x0 < PI / 2 - u < PI / 2 /\ Rabs y < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < x0 < PI / 2 - u < PI / 2 /\ Rabs y < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < x0 < sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u0 < PI / 2 - u < PI / 2 /\ Rabs y < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xu < PIy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u0 < PI / 2 - u < PI / 2 /\ Rabs y < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xt:PI / 2 < PIt':1 < PI / 2u < PIy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u0 < PI / 2 - u < PI / 2 /\ Rabs y < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u0 < PI / 2 - u < PI / 2 /\ Rabs y < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u0 < PI / 2 - u < PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uRabs y < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uRabs y < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uRabs y < / 2 * / cos (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin usin u < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin ut1:0 <= usin u < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin ut1:0 <= ut2:u <= 4sin u < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin ut1:0 <= ut2:u <= 4t:sin u <= sin_approx u (2 * (0 + 1))sin u < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin usin_approx u (2 * (0 + 1)) < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu ^ 1 / 1 + -1 * (u ^ 3 / INR (fact 3)) + u ^ 5 / INR (fact 5) < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu * u ^ 0 / 1 + -1 * (u * u ^ 2 / INR (fact 3)) + u * u ^ 4 / INR (fact 5) < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu * u ^ 0 / 1 + u * u ^ 2 / INR (fact 3) * -1 + u * u ^ 4 / INR (fact 5) < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu * (u ^ 0 * 1 + u ^ 2 * (/ INR (fact 3) * -1) + u ^ 4 * / INR (fact 5)) < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu ^ 0 * 1 + u ^ 2 * (/ INR (fact 3) * -1) + u ^ 4 * / INR (fact 5) < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u1 + (u ^ 2 * (/ INR (fact 3) * -1) + u ^ 4 * / INR (fact 5)) < 1 + 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu ^ 2 * (/ INR (fact 3) * -1) + u ^ 4 * / INR (fact 5) < 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu ^ 2 * / INR (fact 3) * -1 + u ^ 4 * / INR (fact 5) < 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u- (u ^ 2 * / INR (fact 3)) + u ^ 4 * / INR (fact 5) < - (u ^ 2 * / INR (fact 3)) + u ^ 2 * / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu ^ 4 * / INR (fact 5) < u ^ 2 * / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 4 * / INR (fact 5) < u ^ 2 * / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 * u ^ 2 * / INR (fact 5) < u ^ 2 * / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 * / INR (fact 5) < / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 * / INR (fact 5) < u ^ 2 * / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 * / INR (fact 3) < / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2/ INR (fact 5) < / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 * / INR (fact 3) < / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 20 < INR (fact 3) * INR (fact 5)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2INR (fact 3) < INR (fact 5)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 * / INR (fact 3) < / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2INR (fact 3) < INR (fact 5)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 * / INR (fact 3) < / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 * / INR (fact 3) < / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 20 < / INR (fact 3)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 < 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:0 < u ^ 2u ^ 2 < uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < uRabs y + 1 < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u/ / (Rabs y + 1) < / 2 * / sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u/ / (Rabs y + 1) < / (2 * sin u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < usin u <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u0 < 2 * sin u * / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 * sin u < / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < usin u <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u0 < 2 * sin uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u0 < / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 * sin u < / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < usin u <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u0 < / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 * sin u < / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < usin u <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 * sin u < / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < usin u <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 * sin u < 2 * uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 * u = / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < usin u <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 * u = / (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < usin u <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < u2 <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < usin u <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uH2:sin u < usin u <> 0y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < tan (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin u/ 2 * / cos (PI / 2 - u) < sin (PI / 2 - u) / cos (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:R0 < / cos (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:R/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:R0 < cos (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:R/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:R/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Ru < / 4y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Ru < / 2 * / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:R/ (Rabs y + 1) < / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:R0 < 2 * (Rabs y + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:R2 < Rabs y + 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:R2 < Rabs y + 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u/ 2 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u/ 2 < sin 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - usin 1 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - ut':1 <= 4/ 2 < sin 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - usin 1 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - ut':1 <= 4t:sin_approx 1 (2 * 0 + 1) <= sin 1/ 2 < sin 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - usin 1 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - ut':1 <= 4/ 2 < sin_approx 1 (2 * 0 + 1)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - usin 1 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - ut':1 <= 45 / 6 = sin_approx 1 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - usin 1 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - usin 1 < sin (PI / 2 - u)y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u- (PI / 2) <= 1y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u1 <= PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u- (PI / 2) <= PI / 2 - uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - uPI / 2 - u <= PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u1 < PI / 2 - uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u1 <= PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u- (PI / 2) <= PI / 2 - uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - uPI / 2 - u <= PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u1 < PI / 2 - uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u- (PI / 2) <= PI / 2 - uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - uPI / 2 - u <= PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u1 < PI / 2 - uy:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - uPI / 2 - u <= PI / 2y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u1 < PI / 2 - uassumption. Qed.y:RHgt:Rabs y > 1H:0 < / (Rabs y + 1)u:=/ 2 * / (Rabs y + 1):RH0:0 < uvlt1:/ (Rabs y + 1) < 1vlt2:u < 1int:0 < PI / 2 - u < PI / 2tmp:forall x y0 : R, 0 < x -> y0 < 1 -> x * y0 < xH1:0 < sin uu':=PI / 2:Rvlt3:u < / 4H2:1 < PI / 2 - u1 < PI / 2 - uforall x : R, x < PI / 2 -> - PI / 2 < - xintros x h; rewrite Ropp_div; apply Ropp_lt_contravar; assumption. Qed.forall x : R, x < PI / 2 -> - PI / 2 < - xforall x : R, 0 < x -> - x < xintros; lra. Qed.forall x : R, 0 < x -> - x < xforall x y : R, - tan x < y -> tan (- x) < yintros; rewrite tan_neg; assumption. Qed.forall x y : R, - tan x < y -> tan (- x) < yy:R{x : R | - PI / 2 < x < PI / 2 /\ tan x = y}y:R{x : R | - PI / 2 < x < PI / 2 /\ tan x = y}y, ub:Rub0:0 < ububpi2:ub < PI / 2Ptan_ub:Rabs y < tan ub{x : R | - PI / 2 < x < PI / 2 /\ tan x = y}y, ub:Rub0:0 < ububpi2:ub < PI / 2Ptan_ub:Rabs y < tan ubpr:=conj (tech_opp_tan ub y (proj2 (Rabs_def2 y (tan ub) Ptan_ub))) (proj1 (Rabs_def2 y (tan ub) Ptan_ub)):tan (- ub) < y < tan ub{x : R | - PI / 2 < x < PI / 2 /\ tan x = y}y, ub:Rub0:0 < ububpi2:ub < PI / 2Ptan_ub:Rabs y < tan ubpr:=conj (tech_opp_tan ub y (proj2 (Rabs_def2 y (tan ub) Ptan_ub))) (proj1 (Rabs_def2 y (tan ub) Ptan_ub)):tan (- ub) < y < tan ubv:Rvl:- ub < vvu:v < ubvq:tan v = y{x : R | - PI / 2 < x < PI / 2 /\ tan x = y}split;[rewrite Ropp_div; split; lra | assumption]. Qed. Definition atan x := let (v, _) := pre_atan x in v.y, ub:Rub0:0 < ububpi2:ub < PI / 2Ptan_ub:Rabs y < tan ubv:Rvl:- ub < vvu:v < ubvq:tan v = y- PI / 2 < v < PI / 2 /\ tan v = yforall x : R, - PI / 2 < atan x < PI / 2intros x; unfold atan; destruct (pre_atan x) as [v [int _]]; exact int. Qed.forall x : R, - PI / 2 < atan x < PI / 2forall x : R, tan (atan x) = xintros x; unfold atan; destruct (pre_atan x) as [v [_ q]]; exact q. Qed.forall x : R, tan (atan x) = xforall x : R, atan (- x) = - atan xforall x : R, atan (- x) = - atan xx:Ra:- (PI / 2) < atan (- x)b:atan (- x) < PI / 2atan (- x) = - atan xx:Ra:- (PI / 2) < atan (- x)b:atan (- x) < PI / 2c:- (PI / 2) < atan xd:atan x < PI / 2atan (- x) = - atan xrewrite tan_neg, !atan_right_inv; reflexivity. Qed.x:Ra:- (PI / 2) < atan (- x)b:atan (- x) < PI / 2c:- (PI / 2) < atan xd:atan x < PI / 2tan (atan (- x)) = tan (- atan x)forall x : R, derivable_pt atan xforall x : R, derivable_pt atan xx:Rderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ubderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubtan (- ub) < x < tan ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint':x < tan ub /\ - tan ub < xtan (- ub) < x < tan ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubforall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0x, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0derivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0derivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ub- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - uby < tan (- ub)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- PI / 2 < atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubatan y < - ubub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- ub < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubatan y < - ubub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- ub < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- ub < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan ytan ub < yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan y- PI / 2 < ubub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yub < atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yatan y < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yub < atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yatan y < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yatan y < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubforall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= ub- PI / 2 < yx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= uby < zx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= ubz < PI / 2x, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= uby < zx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= ubz < PI / 2x, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= ubz < PI / 2x, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yforall a : R, - ub <= a <= ub -> derivable_pt tan ax, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan ya:Rla:- ub <= aua:a <= ub- PI / 2 < a < PI / 2x, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0x, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0derivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderive_pt tan (atan x) (derivable_pt_tan (atan x) (atan_bound x)) <> 0x, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0derivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan a1 + tan (atan x) ^ 2 <> 0x, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0derivable_pt atan xx, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0derivable_pt atan xexact df_neq. Qed.x, ub:Rub0:0 < ububpi:ub < PI / 2P:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0forall x y : R, x < y -> atan x < atan yforall x y : R, x < y -> atan x < atan yx, y:Rd:x < yatan x < atan yx, y:Rd:x < yt1:- PI / 2 < atan x < PI / 2atan x < atan yx, y:Rd:x < yt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2atan x < atan yx, y:Rd:x < yt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2lt:atan x < atan yatan x < atan yx, y:Rd:x < yt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2bad:atan y <= atan xatan x < atan yx, y:Rd:x < yt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2bad:atan y <= atan xatan x < atan yx, y:Rd:~ y <= xt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2bad:atan y <= atan xatan x < atan yx, y:Rd:~ y <= xt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2bad:atan y <= atan xy <= xx, y:Rd:~ y <= xt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2bad:atan y <= atan xtan (atan y) <= tan (atan x)x, y:Rd:~ y <= xt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2ylt:atan y < atan xtan (atan y) <= tan (atan x)x, y:Rd:~ y <= xt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2yx:atan y = atan xtan (atan y) <= tan (atan x)solve[rewrite yx; apply Rle_refl]. Qed.x, y:Rd:~ y <= xt1:- PI / 2 < atan x < PI / 2t2:- PI / 2 < atan y < PI / 2yx:atan y = atan xtan (atan y) <= tan (atan x)atan 0 = 0atan 0 = 0- PI / 2 < 0 < PI / 2tan (atan 0) = tan 0tan (atan 0) = tan 0reflexivity. Qed.0 = 0atan 1 = PI / 4atan 1 = PI / 4ut:PI > 0atan 1 = PI / 4ut:PI > 0H:- PI / 2 < PI / 4 < PI / 2atan 1 = PI / 4ut:PI > 0H:- PI / 2 < PI / 4 < PI / 2t:- PI / 2 < atan 1 < PI / 2atan 1 = PI / 4rewrite tan_PI4, atan_right_inv; reflexivity. Qed.ut:PI > 0H:- PI / 2 < PI / 4 < PI / 2t:- PI / 2 < atan 1 < PI / 2tan (atan 1) = tan (PI / 4)
atan's derivative value is the function 1 / (1+x²)
forall x : R, derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)forall x : R, derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x:Rderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubtan (- ub) < x < tan ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint':x < tan ub /\ - tan ub < xtan (- ub) < x < tan ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubforall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ub- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - uby < tan (- ub)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- PI / 2 < atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubatan y < - ubub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- ub < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubatan y < - ubub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- ub < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ub- ub < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:atan y < - ubH:y < tan (- ub)- ub <= atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan ytan ub < yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan y- PI / 2 < ubub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yub < atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yatan y < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yub < atan yub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yatan y < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yatan y < PI / 2ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)ub:Rub0:0 < ububpi:ub < PI / 2y:Rlo:tan (- ub) <= yup:y <= tan ubabs:ub < atan yH:tan ub < yatan y <= ubx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubforall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= ub- PI / 2 < yx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= uby < zx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= ubz < PI / 2x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= uby < zx, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= ubz < PI / 2x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y0 : R, tan (- ub) <= y0 -> y0 <= tan ub -> - ub <= atan y0 <= uby, z:Rl:- ub <= yyz:y < zu:z <= ubz < PI / 2x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yforall a : R, - ub <= a <= ub -> derivable_pt tan ax, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan ya:Rla:- ub <= aua:a <= ub- PI / 2 < a < PI / 2x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan aderive_pt tan (atan x) (derivable_pt_tan (atan x) (atan_bound x)) <> 0x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan a1 + tan (atan x) ^ 2 <> 0x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0t:derive_pt atan x (derivable_pt_recip_interv tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der df_neq) = 1 / derive_pt tan (atan x) (der (atan x) (derive_pt_recip_interv_prelim1_1 tan atan (- ub) ub x lb_lt_ub xint incr int_tan inv_p))derive_pt atan x (derivable_pt_atan x) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0t:derive_pt atan x (derivable_pt_recip_interv tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der df_neq) = 1 / derive_pt tan (atan x) (der (atan x) (derive_pt_recip_interv_prelim1_1 tan atan (- ub) ub x lb_lt_ub xint incr int_tan inv_p))derive_pt atan x (derivable_pt_recip_interv tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der df_neq) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0t:derive_pt atan x (derivable_pt_recip_interv tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der df_neq) = 1 / derive_pt tan (atan x) (der (atan x) (derive_pt_recip_interv_prelim1_1 tan atan (- ub) ub x lb_lt_ub xint incr int_tan inv_p))1 / derive_pt tan (atan x) (der (atan x) (derive_pt_recip_interv_prelim1_1 tan atan (- ub) ub x lb_lt_ub xint incr int_tan inv_p)) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0t:derive_pt atan x (derivable_pt_recip_interv tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der df_neq) = 1 / derive_pt tan (atan x) (der (atan x) (derive_pt_recip_interv_prelim1_1 tan atan (- ub) ub x lb_lt_ub xint incr int_tan inv_p))t':- PI / 2 < atan x < PI / 21 / derive_pt tan (atan x) (der (atan x) (derive_pt_recip_interv_prelim1_1 tan atan (- ub) ub x lb_lt_ub xint incr int_tan inv_p)) = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0t:derive_pt atan x (derivable_pt_recip_interv tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der df_neq) = 1 / derive_pt tan (atan x) (der (atan x) (derive_pt_recip_interv_prelim1_1 tan atan (- ub) ub x lb_lt_ub xint incr int_tan inv_p))t':- PI / 2 < atan x < PI / 21 / derive_pt tan (atan x) (derivable_pt_tan (atan x) t') = 1 / (1 + x²)x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0t:derive_pt atan x (derivable_pt_recip_interv tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der df_neq) = 1 / derive_pt tan (atan x) (der (atan x) (derive_pt_recip_interv_prelim1_1 tan atan (- ub) ub x lb_lt_ub xint incr int_tan inv_p))t':- PI / 2 < atan x < PI / 21 / (1 + x ^ 2) = 1 / (1 + x²)reflexivity. Qed.x, ub:Rub0:0 < ububpi:ub < PI / 2Pub:Rabs x < tan ublb_lt_ub:- ub < ubxint:tan (- ub) < x < tan ubinv_p:forall x0 : R, tan (- ub) <= x0 -> x0 <= tan ub -> comp tan atan x0 = id x0int_tan:forall y : R, tan (- ub) <= y -> y <= tan ub -> - ub <= atan y <= ubincr:forall x0 y : R, - ub <= x0 -> x0 < y -> y <= ub -> tan x0 < tan yder:forall a : R, - ub <= a <= ub -> derivable_pt tan adf_neq:derive_pt tan (atan x) (derivable_pt_recip_interv_prelim1 tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der) <> 0t:derive_pt atan x (derivable_pt_recip_interv tan atan (- ub) ub x lb_lt_ub xint inv_p int_tan incr der df_neq) = 1 / derive_pt tan (atan x) (der (atan x) (derive_pt_recip_interv_prelim1_1 tan atan (- ub) ub x lb_lt_ub xint incr int_tan inv_p))t':- PI / 2 < atan x < PI / 21 / (1 + x ^ 2) = 1 / (1 + x ^ 2)forall x : R, derivable_pt_lim atan x (/ (1 + x ^ 2))forall x : R, derivable_pt_lim atan x (/ (1 + x ^ 2))x:Rderivable_pt_lim atan x (/ (1 + x ^ 2))x:Rderive_pt atan x (derivable_pt_atan x) = / (1 + x ^ 2)x:Rderive_pt atan x (derivable_pt_atan x) = / (1 + x * x)apply derive_pt_atan. Qed.x:Rderive_pt atan x (derivable_pt_atan x) = 1 * / (1 + x * x)
(* Proof taken from Guillaume Melquiond's interval package for Coq *) Definition Ratan_seq x := fun n => (x ^ (2 * n + 1) / INR (2 * n + 1))%R.forall x : R, 0 <= x <= 1 -> Un_decreasing (Ratan_seq x)forall x : R, 0 <= x <= 1 -> Un_decreasing (Ratan_seq x)x:RHx:0 <= x <= 1n:natRatan_seq x (S n) <= Ratan_seq x nx:RHx:0 <= x <= 1n:natx ^ (2 * S n + 1) * / INR (2 * S n + 1) <= x ^ (2 * n + 1) * / INR (2 * n + 1)x:RHx:0 <= x <= 1n:nat0 <= x ^ (2 * S n + 1)x:RHx:0 <= x <= 1n:nat0 <= / INR (2 * S n + 1)x:RHx:0 <= x <= 1n:natx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:nat0 <= xx:RHx:0 <= x <= 1n:nat0 <= / INR (2 * S n + 1)x:RHx:0 <= x <= 1n:natx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:nat0 <= / INR (2 * S n + 1)x:RHx:0 <= x <= 1n:natx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:nat0 < / INR (2 * S n + 1)x:RHx:0 <= x <= 1n:natx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:nat0 < INR (2 * S n + 1)x:RHx:0 <= x <= 1n:natx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:nat(0 < 2 * S n + 1)%natx:RHx:0 <= x <= 1n:natx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)(* . 0 < x < 1 *)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1(/ / x) ^ (2 * S n + 1) <= (/ / x) ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0(/ / x) ^ (2 * S n + 1) <= (/ / x) ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0/ (/ x) ^ (2 * S n + 1) <= / (/ x) ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0/ (/ x) ^ (2 * S n + 1) < / (/ x) ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 00 < (/ x) ^ (2 * n + 1) * (/ x) ^ (2 * S n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0(/ x) ^ (2 * n + 1) < (/ x) ^ (2 * S n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0(/ x) ^ (2 * n + 1) < (/ x) ^ (2 * S n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 01 < / xx:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0(2 * n + 1 < 2 * S n + 1)%natx:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0/ 1 < / xx:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0(2 * n + 1 < 2 * S n + 1)%natx:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 00 < x * 1x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0x < 1x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0(2 * n + 1 < 2 * S n + 1)%natx:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 00 < xx:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0x < 1x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0(2 * n + 1 < 2 * S n + 1)%natx:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0x < 1x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0(2 * n + 1 < 2 * S n + 1)%natx:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1H:/ x <> 0(2 * n + 1 < 2 * S n + 1)%natx:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x <> 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x < 1x > 0x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)(* . x = 1 *)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 1x ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 11 ^ (2 * S n + 1) <= 1 ^ (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 < xHx2:x = 11 <= 1x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)(* . x = 0 *)x:RHx:0 <= x <= 1n:natHx1:0 = xx ^ (2 * S n + 1) <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = x0 ^ (2 * S n + 1) <= 0 ^ (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:natHx1:0 = x0 <= 0x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) <= / INR (2 * n + 1)x:RHx:0 <= x <= 1n:nat/ INR (2 * S n + 1) < / INR (2 * n + 1)x:RHx:0 <= x <= 1n:nat0 < INR (2 * n + 1) * INR (2 * S n + 1)x:RHx:0 <= x <= 1n:natINR (2 * n + 1) < INR (2 * S n + 1)x:RHx:0 <= x <= 1n:natINR (2 * n + 1) < INR (2 * S n + 1)omega. Qed.x:RHx:0 <= x <= 1n:nat(2 * n + 1 < 2 * S n + 1)%natforall x : R, 0 <= x <= 1 -> Un_cv (Ratan_seq x) 0forall x : R, 0 <= x <= 1 -> Un_cv (Ratan_seq x) 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / epsexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / eps(0 < up (/ eps))%Zx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / epsH:(0 < up (/ eps))%Zexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / eps0 < IZR (up (/ eps))x:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / epsH:(0 < up (/ eps))%Zexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / eps0 < / epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / epsH:(0 < up (/ eps))%Zexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / eps0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / epsH:(0 < up (/ eps))%Zexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / epsH:(0 < up (/ eps))%Zexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0HN:IZR (up (/ eps)) > / epsp:positiveH:(0 < Z.pos p)%ZH0:up (/ eps) = Z.pos pexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsH:(0 < Z.pos p)%ZH0:up (/ eps) = Z.pos pexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsH:(0 < Z.pos p)%ZH0:up (/ eps) = Z.pos pexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsH:(0 < Z.pos p)%ZH0:up (/ eps) = Z.pos pN:=Pos.to_nat p:natexists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsH:(0 < Z.pos p)%ZH0:up (/ eps) = Z.pos pN:=Pos.to_nat p:natexists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natexists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natforall n : nat, (n >= N)%nat -> R_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natR_dist (Ratan_seq x n) 0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natRabs (Ratan_seq x n - 0) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natRabs (Ratan_seq x n) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natRabs (x ^ (2 * n + 1) / INR (2 * n + 1)) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) <= 1 ^ (2 * n + 1) / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) * / INR (2 * n + 1) <= 1 ^ (2 * n + 1) * / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 <= / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) <= 1 ^ (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 < / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) <= 1 ^ (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 < INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) <= 1 ^ (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat(0 < 2 * n + 1)%natx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) <= 1 ^ (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) <= 1 ^ (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 <= x <= 1x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 ^ (2 * n + 1) / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 / INR (2 * n + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 / INR (2 * n + 1) <= / INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * N + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat1 * / INR (2 * n + 1) <= / INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * N + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * n + 1) <= / INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * N + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR (2 * N + 1) <= INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * N + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat(0 < 2 * N + 1)%natx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR (2 * N + 1) <= INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * N + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR (2 * N + 1) <= INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * N + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat(2 * N + 1 <= 2 * n + 1)%natx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * N + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * N + 1) < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ INR (2 * N + 1) < / / epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 < / eps * INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ eps < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 < / epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ eps < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ eps < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat(0 < 2 * N + 1)%natx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ eps < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ eps < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat/ eps < INR Nx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / eps/ eps < INR Nx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / eps(0 < up (/ eps))%Zx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / epsH0:(0 < up (/ eps))%Z/ eps < INR Nx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / eps0 < IZR (up (/ eps))x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / epsH0:(0 < up (/ eps))%Z/ eps < INR Nx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / eps0 < / epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / epsH0:(0 < up (/ eps))%Z/ eps < INR Nx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / eps0 < epsx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / epsH0:(0 < up (/ eps))%Z/ eps < INR Nx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / epsH0:(0 < up (/ eps))%Z/ eps < INR Nx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / epsH0:(0 < up (/ eps))%Z/ eps < INR (Pos.to_nat p)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natH:IZR (up (/ eps)) > / epsH0:(0 < up (/ eps))%Z/ eps < IZR (Z.pos p)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natINR N < INR (2 * N + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat(N < 2 * N + 1)%natx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps <> 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nateps > 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%natx ^ (2 * n + 1) / INR (2 * n + 1) >= 0x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 <= x ^ (2 * n + 1) / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 <= x ^ (2 * n + 1) * / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 <= x ^ (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 <= / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 <= xx:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 <= / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 <= / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 < / INR (2 * n + 1)x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat0 < INR (2 * n + 1)omega. Qed.x:RHx:0 <= x <= 1eps:RHeps:eps > 0p:positiveHN:IZR (Z.pos p) > / epsN:=Pos.to_nat p:natn:natHn:(n >= N)%nat(0 < 2 * n + 1)%natx:RHx:0 <= x <= 1{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}exact (alternated_series (Ratan_seq x) (Ratan_seq_decreasing _ Hx) (Ratan_seq_converging _ Hx)). Defined.x:RHx:0 <= x <= 1{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}forall (x : R) (n : nat), Ratan_seq (- x) n = - Ratan_seq x nforall (x : R) (n : nat), Ratan_seq (- x) n = - Ratan_seq x nx:Rn:nat(- x) ^ (2 * n + 1) / INR (2 * n + 1) = - (x ^ (2 * n + 1) / INR (2 * n + 1))unfold Rdiv; replace ((-x) ^ 2) with (x ^ 2) by ring; ring. Qed.x:Rn:nat((- x) ^ 2) ^ n * - x / INR (2 * n + 1) = - ((x ^ 2) ^ n * x / INR (2 * n + 1))forall (x : R) (n : nat), sum_f_R0 (tg_alt (Ratan_seq (- x))) n = - sum_f_R0 (tg_alt (Ratan_seq x)) nforall (x : R) (n : nat), sum_f_R0 (tg_alt (Ratan_seq (- x))) n = - sum_f_R0 (tg_alt (Ratan_seq x)) nx:Rn:natsum_f_R0 (tg_alt (Ratan_seq (- x))) n = -1 * sum_f_R0 (tg_alt (Ratan_seq x)) nrewrite Ratan_seq_opp; ring. Qed.x:Rn, i:nat(-1) ^ i * Ratan_seq (- x) i = (-1) ^ i * Ratan_seq x i * -1x:RHx:-1 <= x <= 1{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}x:RHx:-1 <= x <= 1{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}x:RHx:-1 <= x <= 1r:0 <= x{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}x:RHx:-1 <= x <= 1r:x < 0{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}x:RHx:-1 <= x <= 1r:0 <= xpr:0 <= x <= 1{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}x:RHx:-1 <= x <= 1r:x < 0{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}x:RHx:-1 <= x <= 1r:x < 0{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}x:RHx:-1 <= x <= 1r:x < 0pr:0 <= - x <= 1{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}x:RHx:-1 <= x <= 1r:x < 0pr:0 <= - x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) v{l : R | Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) l}x:RHx:-1 <= x <= 1r:x < 0pr:0 <= - x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vUn_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) (- v)x:RHx:-1 <= x <= 1r:x < 0pr:0 <= - x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vforall n : nat, -1 * sum_f_R0 (tg_alt (Ratan_seq (- x))) n = sum_f_R0 (tg_alt (Ratan_seq x)) nx:RHx:-1 <= x <= 1r:x < 0pr:0 <= - x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vUn_cv (fun n : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq (- x))) n) (- v)x:RHx:-1 <= x <= 1r:x < 0pr:0 <= - x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vUn_cv (fun n : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq (- x))) n) (- v)x:RHx:-1 <= x <= 1r:x < 0pr:0 <= - x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vUn_cv (fun n : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq (- x))) n) (-1 * v)solve[intros; exists 0%nat; intros; rewrite R_dist_eq; auto]. Qed.x:RHx:-1 <= x <= 1r:x < 0pr:0 <= - x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vUn_cv (fun _ : nat => -1) (-1)x:R{-1 <= x <= 1} + {~ -1 <= x <= 1}x:R{-1 <= x <= 1} + {~ -1 <= x <= 1}x:Rr:x <= 1{-1 <= x <= 1} + {~ -1 <= x <= 1}x:Rr:1 < x{-1 <= x <= 1} + {~ -1 <= x <= 1}x:Rr:x <= 1r0:-1 <= x{-1 <= x <= 1} + {~ -1 <= x <= 1}x:Rr:x <= 1r0:x < -1{-1 <= x <= 1} + {~ -1 <= x <= 1}x:Rr:1 < x{-1 <= x <= 1} + {~ -1 <= x <= 1}x:Rr:x <= 1r0:x < -1{-1 <= x <= 1} + {~ -1 <= x <= 1}x:Rr:1 < x{-1 <= x <= 1} + {~ -1 <= x <= 1}right;intros [a1 a2]; lra. Qed. Definition ps_atan (x : R) : R := match in_int x with left h => let (v, _) := ps_atan_exists_1 x h in v | right h => atan x end.x:Rr:1 < x{-1 <= x <= 1} + {~ -1 <= x <= 1}
ps_atan 0 = 0ps_atan 0 = 0match in_int 0 with | left h => let (v, _) := ps_atan_exists_1 0 h in v | right _ => atan 0 end = 0h1:-1 <= 0 <= 1(let (v, _) := ps_atan_exists_1 0 h1 in v) = 0h2:~ -1 <= 0 <= 1atan 0 = 0h1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) vv = 0h2:~ -1 <= 0 <= 1atan 0 = 0h1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) vUn_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) 0h2:~ -1 <= 0 <= 1atan 0 = 0h1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) vforall n : nat, 0 = sum_f_R0 (tg_alt (Ratan_seq 0)) nh1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) vUn_cv (fun _ : nat => 0) 0h2:~ -1 <= 0 <= 1atan 0 = 0h1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) vn:natforall n0 : nat, (n0 <= n)%nat -> tg_alt (Ratan_seq 0) n0 = 0h1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) vUn_cv (fun _ : nat => 0) 0h2:~ -1 <= 0 <= 1atan 0 = 0h1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) vn, i:nat(-1) ^ i * (0 * 0 ^ (i + (i + 0)) / match (i + (i + 0))%nat with | 0%nat => 1 | S _ => INR (i + (i + 0)) + 1 end) = 0h1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) vUn_cv (fun _ : nat => 0) 0h2:~ -1 <= 0 <= 1atan 0 = 0h1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) vUn_cv (fun _ : nat => 0) 0h2:~ -1 <= 0 <= 1atan 0 = 0h1:-1 <= 0 <= 1v:RP:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq 0)) N) veps:Rep:eps > 0n:natRabs (0 - 0) < epsh2:~ -1 <= 0 <= 1atan 0 = 0case h2; split; lra. Qed.h2:~ -1 <= 0 <= 1atan 0 = 0forall (x : R) (h : -1 <= - x <= 1) (h' : -1 <= x <= 1), proj1_sig (ps_atan_exists_1 (- x) h) = - proj1_sig (ps_atan_exists_1 x h')forall (x : R) (h : -1 <= - x <= 1) (h' : -1 <= x <= 1), proj1_sig (ps_atan_exists_1 (- x) h) = - proj1_sig (ps_atan_exists_1 x h')x:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vproj1_sig (exist (fun l : R => Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) l) v Pv) = - proj1_sig (ps_atan_exists_1 x h')x:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uv = - ux:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uUn_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)x:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uPu':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)v = - ux:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uUn_cv (fun _ : nat => -1) (-1)x:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uPu':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)v = - ux:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uPu':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)v = - ux:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uPu':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) vx:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uPu':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)Pv':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) vv = - ux:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uPu':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)Pv':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) vv = - uapply UL_sequence with (1:=Pv') (2:= Pu'). Qed.x:Rh:-1 <= - x <= 1h':-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq (- x))) N) vu:RPu:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) uPu':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) (-1 * u)Pv':Un_cv (fun N : nat => -1 * sum_f_R0 (tg_alt (Ratan_seq x)) N) vv = -1 * uforall x : R, ps_atan (- x) = - ps_atan xforall x : R, ps_atan (- x) = - ps_atan xx:Rmatch in_int (- x) with | left h => let (v, _) := ps_atan_exists_1 (- x) h in v | right _ => atan (- x) end = - match in_int x with | left h => let (v, _) := ps_atan_exists_1 x h in v | right _ => atan x endx:Rinside:-1 <= - x <= 1(let (v, _) := ps_atan_exists_1 (- x) inside in v) = - match in_int x with | left h => let (v, _) := ps_atan_exists_1 x h in v | right _ => atan x endx:Routside:~ -1 <= - x <= 1atan (- x) = - match in_int x with | left h => let (v, _) := ps_atan_exists_1 x h in v | right _ => atan x endx:Rinside:-1 <= - x <= 1ins':-1 <= x <= 1(let (v, _) := ps_atan_exists_1 (- x) inside in v) = - (let (v, _) := ps_atan_exists_1 x ins' in v)x:Rinside:-1 <= - x <= 1outs':~ -1 <= x <= 1(let (v, _) := ps_atan_exists_1 (- x) inside in v) = - atan xx:Routside:~ -1 <= - x <= 1atan (- x) = - match in_int x with | left h => let (v, _) := ps_atan_exists_1 x h in v | right _ => atan x endx:Rinside:-1 <= - x <= 1ins':-1 <= x <= 1proj1_sig (ps_atan_exists_1 (- x) inside) = - proj1_sig (ps_atan_exists_1 x ins') -> (let (v, _) := ps_atan_exists_1 (- x) inside in v) = - (let (v, _) := ps_atan_exists_1 x ins' in v)x:Rinside:-1 <= - x <= 1outs':~ -1 <= x <= 1(let (v, _) := ps_atan_exists_1 (- x) inside in v) = - atan xx:Routside:~ -1 <= - x <= 1atan (- x) = - match in_int x with | left h => let (v, _) := ps_atan_exists_1 x h in v | right _ => atan x endx:Rinside:-1 <= - x <= 1outs':~ -1 <= x <= 1(let (v, _) := ps_atan_exists_1 (- x) inside in v) = - atan xx:Routside:~ -1 <= - x <= 1atan (- x) = - match in_int x with | left h => let (v, _) := ps_atan_exists_1 x h in v | right _ => atan x endx:Routside:~ -1 <= - x <= 1atan (- x) = - match in_int x with | left h => let (v, _) := ps_atan_exists_1 x h in v | right _ => atan x endx:Routside:~ -1 <= - x <= 1ins':-1 <= x <= 1atan (- x) = - (let (v, _) := ps_atan_exists_1 x ins' in v)x:Routside:~ -1 <= - x <= 1outs':~ -1 <= x <= 1atan (- x) = - atan xapply atan_opp. Qed.x:Routside:~ -1 <= - x <= 1outs':~ -1 <= x <= 1atan (- x) = - atan x
atan = ps_atan
forall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xforall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xSublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natsum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xSublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:Rsum_f_R0 (tg_alt (Ratan_seq x)) 0 = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) 0) (fun x0 : R => x0 ^ 2) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xsum_f_R0 (tg_alt (Ratan_seq x)) (S N) = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2) xSublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xsum_f_R0 (tg_alt (Ratan_seq x)) (S N) = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2) xSublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xsum_f_R0 (tg_alt (Ratan_seq x)) N + tg_alt (Ratan_seq x) (S N) = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2) xSublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xx * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) x + tg_alt (Ratan_seq x) (S N) = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2) xSublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xx * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) x + tg_alt (Ratan_seq x) (S N) = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xx * sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * (x ^ 2) ^ n) N + tg_alt (Ratan_seq x) (S N) = x * (sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * (x ^ 2) ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xx * sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * (x ^ 2) ^ n) N + tg_alt (Ratan_seq x) (S N) = x * sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * (x ^ 2) ^ n) N + x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xtg_alt (Ratan_seq x) (S N) = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) x(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) x(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x = 0(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x = 0(-1) ^ S N * (0 / INR (2 * S N + 1)) = 0 * ((-1) ^ S N / INR (2 * S N + 1)) * (0 ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x = 0(0 < 2 * S N + 1)%natx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x = 0(-1) ^ S N * (0 / INR (2 * S N + 1)) = 0x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x = 0(0 < 2 * S N + 1)%natx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x = 0(0 < 2 * S N + 1)%natx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1)) = x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1))x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * / INR (2 * S N + 1) * (-1) ^ S N = x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1))x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0/ INR (2 * S N + 1) * (-1) ^ S N = (-1) ^ S N / INR (2 * S N + 1)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0INR (2 * S N + 1) <> 0x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1)) * (x ^ 2) ^ S Nx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1)) = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1)) = (-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1)) = (-1) ^ S N / INR (2 * S N + 1) * ((x ^ 2) ^ S N * x)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) * ((-1) ^ S N / INR (2 * S N + 1)) = (-1) ^ S N / INR (2 * S N + 1) * x ^ (2 * S N + 1)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) = (x ^ 2) ^ S N * xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) = (x ^ 2) ^ S N * xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0x ^ (2 * S N + 1) = x ^ (2 * S N) * xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0forall (x0 : R) (n : nat), x0 ^ n * x0 = x0 ^ (n + 1)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0Temp:forall (x0 : R) (n : nat), x0 ^ n * x0 = x0 ^ (n + 1)x ^ (2 * S N + 1) = x ^ (2 * S N) * xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0a:Ra ^ 0 * a = a ^ (0 + 1)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n0 : nat => (-1) ^ n0 / INR (2 * n0 + 1) * x0 ^ n0) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0a:Rn:natIHn:a ^ n * a = a ^ (n + 1)a ^ S n * a = a ^ (S n + 1)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0Temp:forall (x0 : R) (n : nat), x0 ^ n * x0 = x0 ^ (n + 1)x ^ (2 * S N + 1) = x ^ (2 * S N) * xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0a:R1 * a = a ^ (0 + 1)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n0 : nat => (-1) ^ n0 / INR (2 * n0 + 1) * x0 ^ n0) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0a:Rn:natIHn:a ^ n * a = a ^ (n + 1)a ^ S n * a = a ^ (S n + 1)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0Temp:forall (x0 : R) (n : nat), x0 ^ n * x0 = x0 ^ (n + 1)x ^ (2 * S N + 1) = x ^ (2 * S N) * xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n0 : nat => (-1) ^ n0 / INR (2 * n0 + 1) * x0 ^ n0) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0a:Rn:natIHn:a ^ n * a = a ^ (n + 1)a ^ S n * a = a ^ (S n + 1)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0Temp:forall (x0 : R) (n : nat), x0 ^ n * x0 = x0 ^ (n + 1)x ^ (2 * S N + 1) = x ^ (2 * S N) * xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0Temp:forall (x0 : R) (n : nat), x0 ^ n * x0 = x0 ^ (n + 1)x ^ (2 * S N + 1) = x ^ (2 * S N) * xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xHyp:x <> 0(-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N * x = x * ((-1) ^ S N / INR (2 * S N + 1) * (x ^ 2) ^ S N)x:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xx:RN:natIHN:sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xcomp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) N + (-1) ^ S N / INR (2 * S N + 1) * x0 ^ S N) (fun x0 : R => x0 ^ 2) = comp (fun x0 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x0 ^ n) (S N)) (fun x0 : R => x0 ^ 2)Sublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xSublemma:forall (x : R) (N : nat), sum_f_R0 (tg_alt (Ratan_seq x)) N = x * comp (fun x0 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x0 ^ n) N) (fun x0 : R => x0 ^ 2) xforall (N : nat) (x : R), 0 <= x -> x <= 1 -> continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xSublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1continuity_pt (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) xSublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity idSublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idexists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idexists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idTemp:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2)) -> continuity (id * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idTemp:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2)) -> continuity (id * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idTemp:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2)) -> continuity (id * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))Temp2:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idTemp:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2)) -> continuity (id * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))continuity (fun x1 : R => x1 ^ 2)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idTemp:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2)) -> continuity (id * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))continuity (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idTemp:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2)) -> continuity (id * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))Temp2:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idTemp:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2)) -> continuity (id * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))continuity (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idTemp:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2)) -> continuity (id * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))Temp2:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idTemp:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2)) -> continuity (id * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))Temp2:continuity (comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2))exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idalpha:Ralpha_pos:alpha > 0T:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alpha -> dist R_met ((id * comp (fun x1 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x1 ^ n)%R) N) (fun x1 : R => x1 ^ 2))%F x0) ((id * comp (fun x1 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x1 ^ n)%R) N) (fun x1 : R => x1 ^ 2))%F x) < epsexists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps)Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idalpha:Ralpha_pos:alpha > 0T:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alpha -> dist R_met ((id * comp (fun x1 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x1 ^ n)%R) N) (fun x1 : R => x1 ^ 2))%F x0) ((id * comp (fun x1 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x1 ^ n)%R) N) (fun x1 : R => x1 ^ 2))%F x) < epsalpha > 0Sublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idalpha:Ralpha_pos:alpha > 0T:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alpha -> dist R_met ((id * comp (fun x1 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x1 ^ n)%R) N) (fun x1 : R => x1 ^ 2))%F x0) ((id * comp (fun x1 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x1 ^ n)%R) N) (fun x1 : R => x1 ^ 2))%F x) < epsforall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < epsSublemma:forall (x0 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x0)) N0 = x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x1 ^ n) N0) (fun x1 : R => x1 ^ 2) x0N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idalpha:Ralpha_pos:alpha > 0T:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alpha -> dist R_met ((id * comp (fun x1 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x1 ^ n)%R) N) (fun x1 : R => x1 ^ 2))%F x0) ((id * comp (fun x1 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x1 ^ n)%R) N) (fun x1 : R => x1 ^ 2))%F x) < epsforall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < epsSublemma:forall (x1 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x1)) N0 = x1 * comp (fun x2 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x2 ^ n) N0) (fun x2 : R => x2 ^ 2) x1N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idalpha:Ralpha_pos:alpha > 0T:forall x1 : Base R_met, D_x no_cond x x1 /\ dist R_met x1 x < alpha -> dist R_met ((id * comp (fun x2 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x2 ^ n)%R) N) (fun x2 : R => x2 ^ 2))%F x1) ((id * comp (fun x2 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x2 ^ n)%R) N) (fun x2 : R => x2 ^ 2))%F x) < epsx0:Base R_metx0_cond:D_x no_cond x x0 /\ dist R_met x0 x < alphadist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq x)) N) < epsSublemma:forall (x1 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x1)) N0 = x1 * comp (fun x2 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x2 ^ n) N0) (fun x2 : R => x2 ^ 2) x1N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idalpha:Ralpha_pos:alpha > 0T:forall x1 : Base R_met, D_x no_cond x x1 /\ dist R_met x1 x < alpha -> dist R_met ((id * comp (fun x2 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x2 ^ n)%R) N) (fun x2 : R => x2 ^ 2))%F x1) ((id * comp (fun x2 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x2 ^ n)%R) N) (fun x2 : R => x2 ^ 2))%F x) < epsx0:Base R_metx0_cond:D_x no_cond x x0 /\ dist R_met x0 x < alphadist R_met (x0 * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2) x0) (x * comp (fun x1 : R => sum_f_R0 (fun n : nat => (-1) ^ n / INR (2 * n + 1) * x1 ^ n) N) (fun x1 : R => x1 ^ 2) x) < epsintuition. Qed.Sublemma:forall (x1 : R) (N0 : nat), sum_f_R0 (tg_alt (Ratan_seq x1)) N0 = x1 * comp (fun x2 : R => sum_f_R0 (fun n : nat => (fun i : nat => (-1) ^ i / INR (2 * i + 1)) n * x2 ^ n) N0) (fun x2 : R => x2 ^ 2) x1N:natx:Rx_lb:0 <= xx_ub:x <= 1eps:Reps_pos:eps > 0continuity_id:continuity idalpha:Ralpha_pos:alpha > 0T:forall x1 : Base R_met, D_x no_cond x x1 /\ dist R_met x1 x < alpha -> dist R_met ((id * comp (fun x2 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x2 ^ n)%R) N) (fun x2 : R => x2 ^ 2))%F x1) ((id * comp (fun x2 : R => sum_f_R0 (fun n : nat => ((-1) ^ n / INR (2 * n + 1) * x2 ^ n)%R) N) (fun x2 : R => x2 ^ 2))%F x) < epsx0:Base R_metx0_cond:D_x no_cond x x0 /\ dist R_met x0 x < alphaD_x no_cond x x0 /\ dist R_met x0 x < alpha
Definition of ps_atan's derivative
Definition Datan_seq := fun (x:R) (n:nat) => x ^ (2*n).forall (x : R) (n : nat), 0 <= x < 1 -> (0 < n)%nat -> 0 <= x ^ n < 1forall (x : R) (n : nat), 0 <= x < 1 -> (0 < n)%nat -> 0 <= x ^ n < 1x:Rhx:0 <= x < 10 <= x * 1 < 1x:Rhx:0 <= x < 1m:natH:(1 <= m)%natIHle:0 <= x ^ m < 10 <= x * x ^ m < 1x:Rhx:0 <= x < 1m:natH:(1 <= m)%natIHle:0 <= x ^ m < 10 <= x * x ^ m < 1x:Rhx:0 <= x < 1m:natH:(1 <= m)%natIHle:0 <= x ^ m < 10 <= x * x ^ mx:Rhx:0 <= x < 1m:natH:(1 <= m)%natIHle:0 <= x ^ m < 1x * x ^ m < 1rewrite <- (Rmult_1_r 1); apply Rmult_le_0_lt_compat; intuition. Qed.x:Rhx:0 <= x < 1m:natH:(1 <= m)%natIHle:0 <= x ^ m < 1x * x ^ m < 1forall (x : R) (n : nat), Datan_seq (Rabs x) n = Datan_seq x nintros x n; unfold Datan_seq; rewrite !pow_mult, pow2_abs; reflexivity. Qed.forall (x : R) (n : nat), Datan_seq (Rabs x) n = Datan_seq x nforall (x : R) (n : nat), 0 < x -> 0 < Datan_seq x nforall (x : R) (n : nat), 0 < x -> 0 < Datan_seq x nx:Rx_lb:0 < x0 < x ^ (2 * 0)x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)0 < x ^ (2 * S n)x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)0 < x ^ (2 * S n)x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)0 < x ^ 2 * x ^ (2 * n)x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)x ^ 2 * x ^ (2 * n) = x ^ (2 * S n)x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)x ^ 2 > 0x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)x ^ (2 * n) > 0x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)x ^ 2 * x ^ (2 * n) = x ^ (2 * S n)x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)x ^ (2 * n) > 0x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)x ^ 2 * x ^ (2 * n) = x ^ (2 * S n)x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)x ^ 2 * x ^ (2 * n) = x ^ (2 * S n)simpl ; field. Qed.x:Rn:natx_lb:0 < xIHn:0 < x ^ (2 * n)x ^ 2 * x ^ (2 * n) = x ^ S (S (2 * n))forall (x : R) (n : nat), sum_f_R0 (tg_alt (Datan_seq x)) n = (1 - (- x ^ 2) ^ S n) / (1 + x ^ 2)forall (x : R) (n : nat), sum_f_R0 (tg_alt (Datan_seq x)) n = (1 - (- x ^ 2) ^ S n) / (1 + x ^ 2)x:Rn:natsum_f_R0 (tg_alt (Datan_seq x)) n = (1 - (- x ^ 2) ^ S n) / (1 + x ^ 2)x:Rn:nat- x ^ 2 <> 1x:Rn:natdif:- x ^ 2 <> 1sum_f_R0 (tg_alt (Datan_seq x)) n = (1 - (- x ^ 2) ^ S n) / (1 + x ^ 2)x:Rn:nat- x ^ 2 <= 0x:Rn:natdif:- x ^ 2 <> 1sum_f_R0 (tg_alt (Datan_seq x)) n = (1 - (- x ^ 2) ^ S n) / (1 + x ^ 2)x:Rn:natdif:- x ^ 2 <> 1sum_f_R0 (tg_alt (Datan_seq x)) n = (1 - (- x ^ 2) ^ S n) / (1 + x ^ 2)x:Rn:natdif:- x ^ 2 <> 1sum_f_R0 (tg_alt (Datan_seq x)) n = sum_f_R0 (fun i : nat => (- x ^ 2) ^ i) nx:Rn:natdif:- x ^ 2 <> 1i:nat(-1) ^ i * x ^ (2 * i) = (- x ^ 2) ^ ix:Rn:natdif:- x ^ 2 <> 1i:nat(-1 * x ^ 2) ^ i = (- x ^ 2) ^ iring. Qed.x:Rn:natdif:- x ^ 2 <> 1i:nat-1 * x ^ 2 = - x ^ 2forall (x y : R) (n : nat), (n > 0)%nat -> 0 <= x < y -> Datan_seq x n < Datan_seq y nforall (x y : R) (n : nat), (n > 0)%nat -> 0 <= x < y -> Datan_seq x n < Datan_seq y nx, y:Rn:natn_lb:(n > 0)%natx_encad:0 <= x < yx_pos:x >= 0Datan_seq x n < Datan_seq y nx, y:Rn:natn_lb:(n > 0)%natx_encad:0 <= x < yx_pos:x >= 0y > 0x, y:Rn:natn_lb:(n > 0)%natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0Datan_seq x n < Datan_seq y nx, y:Rn:natn_lb:(n > 0)%natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0Datan_seq x n < Datan_seq y nx, y:Rn_lb:(0 > 0)%natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0Datan_seq x 0 < Datan_seq y 0x, y:Rn:natn_lb:(S n > 0)%natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:(n > 0)%nat -> Datan_seq x n < Datan_seq y nDatan_seq x (S n) < Datan_seq y (S n)x, y:Rn:natn_lb:(S n > 0)%natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:(n > 0)%nat -> Datan_seq x n < Datan_seq y nDatan_seq x (S n) < Datan_seq y (S n)x, y:Rx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0x ^ (2 * 1) < y ^ (2 * 1)x, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x > 0x ^ (2 * 1) < y ^ (2 * 1)x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 0x ^ (2 * 1) < y ^ (2 * 1)x, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Ry_pos:y > 0x_pos:x > 0H:0 <= xH0:x < yx * 1 > 0x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 0x ^ (2 * 1) < y ^ (2 * 1)x, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 0x ^ (2 * 1) < y ^ (2 * 1)x, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 00 < y ^ (2 * 1)x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 0(0 < 2 * 1)%natx, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 00 < y * yx, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 0y * y = y ^ (2 * 1)x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 0(0 < 2 * 1)%natx, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 0y * y = y ^ (2 * 1)x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 0(0 < 2 * 1)%natx, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rx_encad:0 <= x < yy_pos:y > 0x_pos:x = 0(0 < 2 * 1)%natx, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))n:nata:Ra ^ S (S (2 * S n)) = a ^ 2 * a ^ (2 * S n)x, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rn:natx_encad:0 <= x < yx_pos:x >= 0y_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rn:natx_encad:0 <= x < yy_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x_pos:x > 0x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rn:natx_encad:0 <= x < yy_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x_pos:x = 0x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rn:natx_encad:0 <= x < yy_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x_pos:x > 0x ^ 2 * x ^ (2 * S n) < y ^ 2 * y ^ (2 * S n)x, y:Rn:natx_encad:0 <= x < yy_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x_pos:x = 0x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rn:naty_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x_pos:x > 0H:0 <= xH0:x < yx ^ 2 < y ^ 2x, y:Rn:natx_encad:0 <= x < yy_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x_pos:x = 0x ^ (2 * S (S n)) < y ^ (2 * S (S n))x, y:Rn:natx_encad:0 <= x < yy_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x_pos:x = 0x ^ (2 * S (S n)) < y ^ (2 * S (S n))rewrite pow_i ; intuition. Qed.x, y:Rn:natx_encad:0 <= x < yy_pos:y > 0IHn:Datan_seq x (S n) < Datan_seq y (S n)Hrew:forall a : R, a ^ (2 * S (S n)) = a ^ 2 * a ^ (2 * S n)x_pos:x = 00 ^ (2 * S (S n)) < y ^ (2 * S (S n))forall x : R, -1 < x -> x < 1 -> Un_decreasing (Datan_seq x)forall x : R, -1 < x -> x < 1 -> Un_decreasing (Datan_seq x)x:Rx_lb:-1 < xx_ub:x < 1n:natDatan_seq x (S n) <= Datan_seq x nx:Rx_lb:-1 < xx_ub:x < 1n:natx ^ (2 * S n) <= x ^ (2 * n)x:Rx_lb:-1 < xx_ub:x < 1n:natx ^ (2 + 2 * n) <= x ^ (2 * n)x:Rx_lb:-1 < xx_ub:x < 1n:natx ^ (2 + 2 * n) <= 1 * x ^ (2 * n)x:Rx_lb:-1 < xx_ub:x < 1n:natx ^ 2 * x ^ (2 * n) <= 1 * x ^ (2 * n)x:Rx_lb:-1 < xx_ub:x < 1n:nat0 <= x ^ (2 * n)x:Rx_lb:-1 < xx_ub:x < 1n:natx ^ 2 <= 1x:Rx_lb:-1 < xx_ub:x < 1n:natx ^ 2 <= 1x:Rx_lb:-1 < xx_ub:x < 1n:natRabs x ^ 2 < 1x:Rx_lb:-1 < xx_ub:x < 1n:nat0 <= Rabs x < 1x:Rx_lb:-1 < xx_ub:x < 1n:natintabs:0 <= Rabs x < 1Rabs x ^ 2 < 1x:Rx_lb:-1 < xx_ub:x < 1n:natintabs:0 <= Rabs x < 1Rabs x ^ 2 < 1x:Rx_lb:-1 < xx_ub:x < 1n:natintabs:0 <= Rabs x ^ 2 < 1Rabs x ^ 2 < 1x:Rx_lb:-1 < xx_ub:x < 1n:natintabs:0 <= Rabs x < 1(0 < 2)%natomega. Qed.x:Rx_lb:-1 < xx_ub:x < 1n:natintabs:0 <= Rabs x < 1(0 < 2)%natforall x : R, -1 < x -> x < 1 -> Un_cv (Datan_seq x) 0forall x : R, -1 < x -> x < 1 -> Un_cv (Datan_seq x) 0x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Datan_seq x n) 0 < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Rabs (x ^ 2) < 1x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Datan_seq x n) 0 < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x ^ 2 < 1x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Datan_seq x n) 0 < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Rabs x ^ 2 < 1x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Datan_seq x n) 0 < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0H:0 <= Rabs x < 1Rabs x ^ 2 < 1x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Datan_seq x n) 0 < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Datan_seq x n) 0 < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < epsn:natHn:(n >= N)%natR_dist (Datan_seq x n) 0 < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < epsn:natHn:(n >= N)%natRabs (x ^ (2 * n) - 0) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < epsn:natHn:(n >= N)%natRabs ((x ^ 2) ^ n) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < epsn:natHn:(n >= N)%nat(x ^ 2) ^ n = x ^ (2 * n) - 0rewrite pow_mult ; field. Qed.x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0x_ub2:Rabs (x ^ 2) < 1N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < epsn:natHn:(n >= N)%nat(x ^ 2) ^ n = x ^ (2 * n) - 0forall x : R, -1 < x -> x < 1 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (Datan_seq x)) N) (/ (1 + x ^ 2))forall x : R, -1 < x -> x < 1 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (Datan_seq x)) N) (/ (1 + x ^ 2))x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 20 < 1 + x ^ 2x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2/ (1 + x ^ 2) > 0x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 00 <= Rabs (x ^ 2) < 1x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 00 <= Rabs x ^ 2 < 1x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0Rabs x < 1x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1(1 + x ^ 2) * eps > 0x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n : nat, (n >= N)%nat -> Rabs ((x ^ 2) ^ n) < (1 + x ^ 2) * epsforall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natR_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%nat- x ^ 2 <> 1x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%nat- x ^ 2 <= 0x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1R_dist (sum_f_R0 (tg_alt (Datan_seq x)) n) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1R_dist ((1 - (- x ^ 2) ^ S n) / (1 + x ^ 2)) (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1Rabs ((1 - (- x ^ 2) ^ S n) / (1 + x ^ 2) - / (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1forall a b : R, a / b - / b = (-1 + a) / bx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b : R, a / b - / b = (-1 + a) / bRabs ((1 - (- x ^ 2) ^ S n) / (1 + x ^ 2) - / (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b:Ra * / b + - (1 * / b) = (-1 + a) * / bx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b : R, a / b - / b = (-1 + a) / bRabs ((1 - (- x ^ 2) ^ S n) / (1 + x ^ 2) - / (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b:R- (1) * / b + a * / b = -1 * / b + a * / bx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b : R, a / b - / b = (-1 + a) / bRabs ((1 - (- x ^ 2) ^ S n) / (1 + x ^ 2) - / (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b : R, a / b - / b = (-1 + a) / bRabs ((1 - (- x ^ 2) ^ S n) / (1 + x ^ 2) - / (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b : R, a / b - / b = (-1 + a) / bu:=1 + x ^ 2:RRabs ((-1 + 1 + - (- x ^ 2) ^ S n) / u) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b : R, a / b - / b = (-1 + a) / bu:=1 + x ^ 2:RRabs ((-1 + 1 + - (- x ^ 2) ^ S n) * / (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b : R, a / b - / b = (-1 + a) / bu:=1 + x ^ 2:RRabs ((- (1) + 1 + - (- x ^ 2) ^ S n) * / (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b : R, a / b - / b = (-1 + a) / bu:=1 + x ^ 2:RRabs ((- x ^ 2) ^ S n * / (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1Rabs ((- x ^ 2) ^ S n) * Rabs (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1forall k : nat, Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall k : nat, Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)Rabs ((- x ^ 2) ^ S n) * Rabs (/ (1 + x ^ 2)) < epsx:RTool0:0 <= x ^ 2k:natIHk:Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)Rabs ((- x ^ 2) ^ S k) = Rabs ((x ^ 2) ^ S k)x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall k : nat, Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)Rabs ((- x ^ 2) ^ S n) * Rabs (/ (1 + x ^ 2)) < epsx:RTool0:0 <= x ^ 2k:natIHk:Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)x ^ 2 * Rabs ((x ^ 2) ^ k) = x ^ 2 * Rabs ((x ^ 2) ^ k)x:RTool0:0 <= x ^ 2k:natIHk:Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)0 <= x ^ 2x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall k : nat, Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)Rabs ((- x ^ 2) ^ S n) * Rabs (/ (1 + x ^ 2)) < epsx:RTool0:0 <= x ^ 2k:natIHk:Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)0 <= x ^ 2x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall k : nat, Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)Rabs ((- x ^ 2) ^ S n) * Rabs (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall k : nat, Rabs ((- x ^ 2) ^ k) = Rabs ((x ^ 2) ^ k)Rabs ((- x ^ 2) ^ S n) * Rabs (/ (1 + x ^ 2)) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1Rabs ((x ^ 2) ^ S n) * / (1 + x ^ 2) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1forall a b c : R, 0 < b -> a < b * c -> a * / b < cx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b c : R, 0 < b -> a < b * c -> a * / b < cRabs ((x ^ 2) ^ S n) * / (1 + x ^ 2) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b, c:Rbp:0 < bh:a < b * ca * / b < b * c * / bx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b, c:Rbp:0 < bh:a < b * cb * c * / b = cx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b c : R, 0 < b -> a < b * c -> a * / b < cRabs ((x ^ 2) ^ S n) * / (1 + x ^ 2) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b, c:Rbp:0 < bh:a < b * c0 < / bx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b, c:Rbp:0 < bh:a < b * ca < b * cx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b, c:Rbp:0 < bh:a < b * cb * c * / b = cx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b c : R, 0 < b -> a < b * c -> a * / b < cRabs ((x ^ 2) ^ S n) * / (1 + x ^ 2) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b, c:Rbp:0 < bh:a < b * ca < b * cx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b, c:Rbp:0 < bh:a < b * cb * c * / b = cx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b c : R, 0 < b -> a < b * c -> a * / b < cRabs ((x ^ 2) ^ S n) * / (1 + x ^ 2) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1a, b, c:Rbp:0 < bh:a < b * cb * c * / b = cx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b c : R, 0 < b -> a < b * c -> a * / b < cRabs ((x ^ 2) ^ S n) * / (1 + x ^ 2) < epsx:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b c : R, 0 < b -> a < b * c -> a * / b < cRabs ((x ^ 2) ^ S n) * / (1 + x ^ 2) < epsapply HN; omega. Qed.x:Rx_lb:-1 < xx_ub:x < 1eps:Reps_pos:eps > 0Tool0:0 <= x ^ 2Tool1:0 < 1 + x ^ 2Tool2:/ (1 + x ^ 2) > 0x_ub2':0 <= Rabs (x ^ 2) < 1x_ub2:Rabs (x ^ 2) < 1eps'_pos:(1 + x ^ 2) * eps > 0N:natHN:forall n0 : nat, (n0 >= N)%nat -> Rabs ((x ^ 2) ^ n0) < (1 + x ^ 2) * epsn:natHn:(n >= N)%natH1:- x ^ 2 <> 1tool:forall a b c : R, 0 < b -> a < b * c -> a * / b < cRabs ((x ^ 2) ^ S n) < (1 + x ^ 2) * epsforall (c : R) (r : posreal), Rabs c + r < 1 -> CVU (fun (N : nat) (x : R) => sum_f_R0 (tg_alt (Datan_seq x)) N) (fun y : R => / (1 + y ^ 2)) c rforall (c : R) (r : posreal), Rabs c + r < 1 -> CVU (fun (N : nat) (x : R) => sum_f_R0 (tg_alt (Datan_seq x)) N) (fun y : R => / (1 + y ^ 2)) c rc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsexists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule c r y -> Rabs (/ (1 + y ^ 2) - sum_f_R0 (tg_alt (Datan_seq y)) n) < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall x : R, Boule c r x -> Un_decreasing (fun n : nat => Datan_seq x n)c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall x : R, Boule c r x -> Un_cv (fun n : nat => Datan_seq x n) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => Datan_seq x i))) (/ (1 + x ^ 2))c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall (x : R) (n : nat), Boule c r x -> Datan_seq x n <= Datan_seq (Rabs c + r) nc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall x : R, Boule c r x -> Un_cv (fun n : nat => Datan_seq x n) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => Datan_seq x i))) (/ (1 + x ^ 2))c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall (x : R) (n : nat), Boule c r x -> Datan_seq x n <= Datan_seq (Rabs c + r) nc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall x : R, Boule c r x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => Datan_seq x i))) (/ (1 + x ^ 2))c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall (x : R) (n : nat), Boule c r x -> Datan_seq x n <= Datan_seq (Rabs c + r) nc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsforall (x : R) (n : nat), Boule c r x -> Datan_seq x n <= Datan_seq (Rabs c + r) nc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsx:Rinb:Boule c r xDatan_seq x 0 <= Datan_seq (Rabs c + r) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsx:Rn:natinb:Boule c r xDatan_seq x (S n) <= Datan_seq (Rabs c + r) (S n)c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsx:Rn:natinb:Boule c r xDatan_seq x (S n) <= Datan_seq (Rabs c + r) (S n)c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsx:Rn:natinb:Boule c r x(S n > 0)%natc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsx:Rn:natinb:Boule c r x0 <= Rabs x < Rabs c + rc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsx:Rn:natinb:Boule c r x0 <= Rabs x < Rabs c + rc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsx:Rn:natinb:Rabs x < Rabs c + r0 <= Rabs xc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsUn_cv (Datan_seq (Rabs c + r)) 0c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps-1 < Rabs c + rc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsRabs c + r < 1c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < Rabs c + rc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsRabs c + r < 1c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 <= Rabs cc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < rc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsRabs c + r < 1c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < rc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsRabs c + r < 1c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsc:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < epsRabs c + r < 1c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsassumption. Qed.c:Rr:posrealub_ub:Rabs c + r < 1eps:Reps_pos:0 < eps0 < epsforall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)forall N : nat, (-1) ^ S (2 * N) = -1Tool:forall N : nat, (-1) ^ S (2 * N) = -1forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)(-1) ^ S (2 * 0) = -1n:natIHn:(-1) ^ S (2 * n) = -1(-1) ^ S (2 * S n) = -1Tool:forall N : nat, (-1) ^ S (2 * N) = -1forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)n:natIHn:(-1) ^ S (2 * n) = -1(-1) ^ S (2 * S n) = -1Tool:forall N : nat, (-1) ^ S (2 * N) = -1forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)n:natIHn:(-1) ^ S (2 * n) = -1(-1) ^ 2 * (-1) ^ S (2 * n) = -1n:natIHn:(-1) ^ S (2 * n) = -1(-1) ^ 2 * (-1) ^ S (2 * n) = (-1) ^ S (2 * S n)Tool:forall N : nat, (-1) ^ S (2 * N) = -1forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)n:natIHn:(-1) ^ S (2 * n) = -1(-1) ^ 2 * (-1) ^ S (2 * n) = (-1) ^ S (2 * S n)Tool:forall N : nat, (-1) ^ S (2 * N) = -1forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)n:natIHn:(-1) ^ S (2 * n) = -1(-1) ^ (2 + S (2 * n)) = (-1) ^ S (2 * S n)Tool:forall N : nat, (-1) ^ S (2 * N) = -1forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)n:natIHn:(-1) ^ S (2 * n) = -1(-1) ^ S (2 * S n) = (-1) ^ S (2 * S n)n:natIHn:(-1) ^ S (2 * n) = -1S (2 * S n) = (2 + S (2 * n))%natTool:forall N : nat, (-1) ^ S (2 * N) = -1forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)n:natIHn:(-1) ^ S (2 * n) = -1S (2 * S n) = (2 + S (2 * n))%natTool:forall N : nat, (-1) ^ S (2 * N) = -1forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)Tool:forall N : nat, (-1) ^ S (2 * N) = -1forall (N : nat) (x : R), -1 <= x -> x < 1 -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)Tool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) 0) x (sum_f_R0 (tg_alt (Datan_seq x)) 0)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) (S N)) x (sum_f_R0 (tg_alt (Datan_seq x)) (S N))Tool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1derivable_pt_lim (fun x0 : R => 1 * (x0 * 1 / 1)) x (1 * 1)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) (S N)) x (sum_f_R0 (tg_alt (Datan_seq x)) (S N))Tool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((1 * ((x + h) * 1 / 1) - 1 * (x * 1 / 1)) / h - 1 * 1) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) (S N)) x (sum_f_R0 (tg_alt (Datan_seq x)) (S N))Tool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epsdelta:posrealHdelta:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((id (x + h) - id x) / h - 1) < epsforall h : R, h <> 0 -> Rabs h < delta -> Rabs ((1 * ((x + h) * 1 / 1) - 1 * (x * 1 / 1)) / h - 1 * 1) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) (S N)) x (sum_f_R0 (tg_alt (Datan_seq x)) (S N))Tool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epsdelta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((id (x + h0) - id x) / h0 - 1) < epsh:Rhneq:h <> 0h_b:Rabs h < deltaRabs ((1 * ((x + h) * 1 / 1) - 1 * (x * 1 / 1)) / h - 1 * 1) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) (S N)) x (sum_f_R0 (tg_alt (Datan_seq x)) (S N))Tool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epsdelta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((id (x + h0) - id x) / h0 - 1) < epsh:Rhneq:h <> 0h_b:Rabs h < deltaRabs ((id (x + h) - id x) / h - 1 * 1) < epsTool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epsdelta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((id (x + h0) - id x) / h0 - 1) < epsh:Rhneq:h <> 0h_b:Rabs h < deltaid (x + h) - id x = 1 * ((x + h) * 1 / 1) - 1 * (x * 1 / 1)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) (S N)) x (sum_f_R0 (tg_alt (Datan_seq x)) (S N))Tool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epsdelta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((id (x + h0) - id x) / h0 - 1) < epsh:Rhneq:h <> 0h_b:Rabs h < deltaRabs ((id (x + h) - id x) / h - 1) < epsTool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epsdelta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((id (x + h0) - id x) / h0 - 1) < epsh:Rhneq:h <> 0h_b:Rabs h < deltaid (x + h) - id x = 1 * ((x + h) * 1 / 1) - 1 * (x * 1 / 1)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) (S N)) x (sum_f_R0 (tg_alt (Datan_seq x)) (S N))Tool:forall N : nat, (-1) ^ S (2 * N) = -1x:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epsdelta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((id (x + h0) - id x) / h0 - 1) < epsh:Rhneq:h <> 0h_b:Rabs h < deltaid (x + h) - id x = 1 * ((x + h) * 1 / 1) - 1 * (x * 1 / 1)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) (S N)) x (sum_f_R0 (tg_alt (Datan_seq x)) (S N))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) (S N)) x (sum_f_R0 (tg_alt (Datan_seq x)) (S N))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h : R, h <> 0 -> Rabs h < delta -> Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaRabs (((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaRabs ((-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N))) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaRabs (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaRabs (/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1))) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaRabs (/ INR (2 * S N + 1)) * Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) = 0Rabs (/ INR (2 * S N + 1)) * Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (/ INR (2 * S N + 1)) * Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (/ INR (2 * S N + 1)) * Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (/ INR (2 * S N + 1)) * Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 00 < Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (/ INR (2 * S N + 1)) < 1Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (/ INR (2 * S N + 1)) < 1Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0/ INR (2 * S N + 1) < 1Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0/ INR (2 * S N + 1) >= 0Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0/ INR (2 * S N + 1) < / 1Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0/ INR (2 * S N + 1) >= 0Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0/ INR (2 * S N + 1) >= 0Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0INR (2 * S N) + 1 = INR (2 * S N + 1)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaHeq:((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1) <> 0Rabs (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h) - / INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h) - x ^ (2 * S N) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltax ^ (2 * S N) = / INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta- x ^ (2 * S N) + / INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) + - x ^ (2 * S N + 1)) / h) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) + - (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h + - x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltax ^ (2 * S N) = / INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta- x ^ (2 * S N) + / INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) + - x ^ (2 * S N + 1)) / h) = - x ^ (2 * S N) + ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) + - (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / hTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltax ^ (2 * S N) = / INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta/ INR (2 * S N + 1) * (((x + h) ^ (2 * S N + 1) + - x ^ (2 * S N + 1)) / h) = ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) + - (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / hTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltax ^ (2 * S N) = / INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltaINR (2 * S N + 1) <> 0 /\ h <> 0Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltax ^ (2 * S N) = / INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < deltax ^ (2 * S N) = / INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsN:natx:Rx ^ (2 * S N) = / INR (2 * S N + 1) * (INR (2 * S N + 1) * x ^ (2 * S N))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx, eps':Reps'_pos:0 < eps'delta:posrealHdelta:forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs (((x + h0) ^ (2 * S N + 1) - x ^ (2 * S N + 1)) / h0 - INR (2 * S N + 1) * x ^ Init.Nat.pred (2 * S N + 1)) < eps'h:Rh_neq:h <> 0h_b:Rabs h < delta(-1) ^ S N * (((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1) - x ^ (2 * S N + 1) / INR (2 * S N + 1)) / h - x ^ (2 * S N)) = ((-1) ^ S N * ((x + h) ^ (2 * S N + 1) / INR (2 * S N + 1)) - (-1) ^ S N * (x ^ (2 * S N + 1) / INR (2 * S N + 1))) / h - (-1) ^ S N * x ^ (2 * S N)Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:posrealHdelta1:forall h : R, h <> 0 -> Rabs h < delta1 -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))delta2:posrealHdelta2:forall h : R, h <> 0 -> Rabs h < delta2 -> Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) < eps / 3exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h : R, h <> 0 -> Rabs h < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h : R, h <> 0 -> Rabs h < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) < eps / 3exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h : R, h <> 0 -> Rabs h < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h : R, h <> 0 -> Rabs h < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h : R, h <> 0 -> Rabs h < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h : R, h <> 0 -> Rabs h < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta > 0Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h : R, h <> 0 -> Rabs h < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h : R, h <> 0 -> Rabs h < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h : R, h <> 0 -> Rabs h < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h : R, h <> 0 -> Rabs h < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1IHN:derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) x (sum_f_R0 (tg_alt (Datan_seq x)) N)eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3Main:derivable_pt_lim (fun x0 : R => tg_alt (Ratan_seq x0) (S N)) x (tg_alt (Datan_seq x) (S N))delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaRabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaRabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaRabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaRabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) <= eps / 3 + eps / 3Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaeps / 3 + eps / 3 < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < delta(sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = (sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaTemp:(sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = (sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N))Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) <= eps / 3 + eps / 3Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaeps / 3 + eps / 3 < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaTemp:(sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = (sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N))Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) <= eps / 3 + eps / 3Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaeps / 3 + eps / 3 < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaTemp:(sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = (sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N))Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N)) <= Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N) + Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N))Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaTemp:(sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = (sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N))Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N) + Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) <= eps / 3 + eps / 3Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaeps / 3 + eps / 3 < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaTemp:(sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = (sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N))Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N) + Rabs ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)) <= eps / 3 + eps / 3Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaeps / 3 + eps / 3 < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h = 0 -> Falseh_b:Rabs h < deltaTemp:(sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = (sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)){| pos := Rmin delta1 delta2; cond_pos := mydelta_pos |} <= {| pos := delta1; cond_pos := delta1_pos |}Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h = 0 -> Falseh_b:Rabs h < deltaTemp:(sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = (sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)){| pos := Rmin delta1 delta2; cond_pos := mydelta_pos |} <= {| pos := delta2; cond_pos := delta2_pos |}Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaeps / 3 + eps / 3 < epsTool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, (h0 = 0 -> False) -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h = 0 -> Falseh_b:Rabs h < deltaTemp:(sum_f_R0 (tg_alt (Ratan_seq (x + h))) (S N) - sum_f_R0 (tg_alt (Ratan_seq x)) (S N)) / h + - sum_f_R0 (tg_alt (Datan_seq x)) (S N) = (sum_f_R0 (tg_alt (Ratan_seq (x + h))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h + - sum_f_R0 (tg_alt (Datan_seq x)) N + ((tg_alt (Ratan_seq (x + h)) (S N) - tg_alt (Ratan_seq x) (S N)) / h - tg_alt (Datan_seq x) (S N)){| pos := Rmin delta1 delta2; cond_pos := mydelta_pos |} <= {| pos := delta2; cond_pos := delta2_pos |}Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaeps / 3 + eps / 3 < epslra. Qed.Tool:forall N0 : nat, (-1) ^ S (2 * N0) = -1N:natx:Rx_lb:-1 <= xx_ub:x < 1eps:Reps_pos:0 < epseps_3_pos:eps / 3 > 0delta1:Rdelta1_pos:0 < delta1Hdelta1:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta1; cond_pos := delta1_pos |} -> Rabs ((sum_f_R0 (tg_alt (Ratan_seq (x + h0))) N - sum_f_R0 (tg_alt (Ratan_seq x)) N) / h0 - sum_f_R0 (tg_alt (Datan_seq x)) N) < eps / 3delta2:Rdelta2_pos:0 < delta2Hdelta2:forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := delta2; cond_pos := delta2_pos |} -> Rabs ((tg_alt (Ratan_seq (x + h0)) (S N) - tg_alt (Ratan_seq x) (S N)) / h0 - tg_alt (Datan_seq x) (S N)) < eps / 3mydelta:=Rmin delta1 delta2:Rmydelta_pos:mydelta > 0delta:={| pos := mydelta; cond_pos := mydelta_pos |}:posrealh:Rh_neq:h <> 0h_b:Rabs h < deltaeps / 3 + eps / 3 < epsCVU (fun (N : nat) (x : R) => sum_f_R0 (tg_alt (Ratan_seq x)) N) ps_atan (/ 2) {| pos := / 2; cond_pos := pos_half_prf |}CVU (fun (N : nat) (x : R) => sum_f_R0 (tg_alt (Ratan_seq x)) N) ps_atan (/ 2) {| pos := / 2; cond_pos := pos_half_prf |}forall x : R, Boule (/ 2) pos_half x -> Un_decreasing (fun n : nat => Ratan_seq x n)forall x : R, Boule (/ 2) pos_half x -> Un_cv (fun n : nat => Ratan_seq x n) 0forall x : R, Boule (/ 2) pos_half x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => Ratan_seq x i))) (ps_atan x)forall (x : R) (n : nat), Boule (/ 2) pos_half x -> Ratan_seq x n <= PI_tg nUn_cv PI_tg 0forall x : R, Boule (/ 2) pos_half x -> Un_cv (fun n : nat => Ratan_seq x n) 0forall x : R, Boule (/ 2) pos_half x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => Ratan_seq x i))) (ps_atan x)forall (x : R) (n : nat), Boule (/ 2) pos_half x -> Ratan_seq x n <= PI_tg nUn_cv PI_tg 0forall x : R, Boule (/ 2) pos_half x -> Un_cv (sum_f_R0 (tg_alt (fun i : nat => Ratan_seq x i))) (ps_atan x)forall (x : R) (n : nat), Boule (/ 2) pos_half x -> Ratan_seq x n <= PI_tg nUn_cv PI_tg 0x:Rb:0 <= x <= 1Un_cv (sum_f_R0 (tg_alt (fun i : nat => Ratan_seq x i))) (ps_atan x)forall (x : R) (n : nat), Boule (/ 2) pos_half x -> Ratan_seq x n <= PI_tg nUn_cv PI_tg 0x:Rb:0 <= x <= 1inside:-1 <= x <= 1Un_cv (sum_f_R0 (tg_alt (fun i : nat => Ratan_seq x i))) (let (v, _) := ps_atan_exists_1 x inside in v)forall (x : R) (n : nat), Boule (/ 2) pos_half x -> Ratan_seq x n <= PI_tg nUn_cv PI_tg 0x:Rb:0 <= x <= 1inside:-1 <= x <= 1v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt (Ratan_seq x)) N) vUn_cv (sum_f_R0 (tg_alt (fun i : nat => Ratan_seq x i))) vforall (x : R) (n : nat), Boule (/ 2) pos_half x -> Ratan_seq x n <= PI_tg nUn_cv PI_tg 0forall (x : R) (n : nat), Boule (/ 2) pos_half x -> Ratan_seq x n <= PI_tg nUn_cv PI_tg 0x:Rn:natb:0 <= x <= 1Ratan_seq x n <= PI_tg nUn_cv PI_tg 0x:Rn:natb:0 <= x <= 1x ^ (2 * n + 1) / INR (2 * n + 1) <= 1 * / INR (2 * n + 1)Un_cv PI_tg 0x:Rn:natb:0 <= x <= 10 <= / INR (2 * n + 1)x:Rn:natb:0 <= x <= 1x ^ (2 * n + 1) <= 1Un_cv PI_tg 0x:Rn:natb:0 <= x <= 1x ^ (2 * n + 1) <= 1Un_cv PI_tg 0exact PI_tg_cv. Qed.Un_cv PI_tg 0CVU (fun (N : nat) (x : R) => sum_f_R0 (tg_alt (Ratan_seq x)) N) ps_atan 0 {| pos := 1; cond_pos := Rlt_0_1 |}CVU (fun (N : nat) (x : R) => sum_f_R0 (tg_alt (Ratan_seq x)) N) ps_atan 0 {| pos := 1; cond_pos := Rlt_0_1 |}eps:Rep:0 < epsN:natPn:forall (n : nat) (y : R), (N <= n)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xxgt0:0 < xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xxgt0:0 < xBoule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} xeps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xxgt0:0 < xH:Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natxgt0:0 < xb_y:x - 0 < 1 /\ - (1) < x - 0Rabs (x - / 2) < / 2eps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xxgt0:0 < xH:Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xxgt0:0 < xH:Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xRabs (0 - sum_f_R0 (tg_alt (Ratan_seq 0)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = x0 < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = x0 <= 0eps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xforall i : nat, (i <= n)%nat -> 0 = tg_alt (Ratan_seq 0) ieps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = x0 <= 0eps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xforall i : nat, (i <= n)%nat -> 0 = tg_alt (Ratan_seq 0) ieps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xforall i : nat, (i <= n)%nat -> 0 = tg_alt (Ratan_seq 0) ieps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 = xi:nat0 = (-1) ^ i * (0 * 0 ^ (i + (i + 0)) * / match (i + (i + 0))%nat with | 0%nat => 1 | S _ => INR (i + (i + 0)) + 1 end)eps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (- (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n)) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > x- (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) = ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) neps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xRabs (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > x- (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) = ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) neps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xBoule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} (- x)eps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xH:Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} (- x)Rabs (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > x- (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) = ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) neps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natx0:0 > xb_y:x - 0 < 1 /\ - (1) < x - 0Rabs (- x - / 2) < / 2eps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xH:Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} (- x)Rabs (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > x- (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) = ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) neps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > xH:Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} (- x)Rabs (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) < epseps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > x- (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) = ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) neps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > x- (ps_atan (- x) - sum_f_R0 (tg_alt (Ratan_seq (- x))) n) = ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) nrewrite !Ropp_involutive; reflexivity. Qed.eps:Rep:0 < epsN:natPn:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule (/ 2) {| pos := / 2; cond_pos := pos_half_prf |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natx:RnN:(N <= n)%natb_y:Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xx0:0 > x- - ps_atan x + - - - sum_f_R0 (tg_alt (Ratan_seq x)) n = ps_atan x + - sum_f_R0 (tg_alt (Ratan_seq x)) nforall n : nat, PI_tg n = Ratan_seq 1 nforall n : nat, PI_tg n = Ratan_seq 1 nreflexivity. Qed.n:nat/ INR (2 * n + 1) = / INR (2 * n + 1)forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < epsforall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < epseps:Rep:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < epseps:Rep:eps > 0N1:natPN1:forall (n : nat) (y : R), (N1 <= n)%nat -> Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n) < epsexists N : nat, forall n : nat, (n >= N)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < epseps:Rep:eps > 0N1:natPN1:forall (n0 : nat) (y : R), (N1 <= n0)%nat -> Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natnN:(n >= N1)%natx:Rxm1:-1 < xx1:x < 1Rabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) n) < epsunfold Boule; simpl; rewrite Rminus_0_r; apply Rabs_def1; assumption. Qed.eps:Rep:eps > 0N1:natPN1:forall (n0 : nat) (y : R), (N1 <= n0)%nat -> Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} y -> Rabs (ps_atan y - sum_f_R0 (tg_alt (Ratan_seq y)) n0) < epsn:natnN:(n >= N1)%natx:Rxm1:-1 < xx1:x < 1Boule 0 {| pos := 1; cond_pos := Rlt_0_1 |} xcontinuity (fun x : R => / (1 + x ^ 2))continuity (fun x : R => / (1 + x ^ 2))continuity (fun x : R => 1 + x ^ 2)forall x : R, 1 + x ^ 2 <> 0continuity (fun _ : R => 1)continuity (fun x : R => x ^ 2)forall x : R, 1 + x ^ 2 <> 0continuity (fun x : R => x ^ 2)forall x : R, 1 + x ^ 2 <> 0forall x : R, 1 + x ^ 2 <> 0x:Rx ^ 2 >= 0x:Rx² >= 0x:Rx² = x ^ 2unfold Rsqr ; field. Qed.x:Rx² = x ^ 2forall x : R, -1 < x < 1 -> derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)forall x : R, -1 < x < 1 -> derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)x:Rx_encad:-1 < x < 1derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1derivable_pt_lim ps_atan x (/ (1 + x ^ 2))x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1derivable_pt_lim ps_atan x ((fun u : R => / (1 + u ^ 2)) x)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)derivable_pt_lim ps_atan x ((fun u : R => / (1 + u ^ 2)) x)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)Boule c r xx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall (y : R) (n : nat), Boule c r y -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) n) y (sum_f_R0 (tg_alt (Datan_seq y)) n)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> Un_cv (fun n : nat => sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall (y : R) (n : nat), Boule c r y -> derivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) n) y (sum_f_R0 (tg_alt (Datan_seq y)) n)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> Un_cv (fun n : nat => sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y0 : R) (n : nat), Boule c0 r0 y0 -> derivable_pt_lim (fn n) y0 (fn' n y0)) -> (forall y0 : R, Boule c0 r0 y0 -> Un_cv (fun n : nat => fn n y0) (f y0)) -> CVU fn' g c0 r0 -> (forall y0 : R, Boule c0 r0 y0 -> continuity_pt g y0) -> derivable_pt_lim f x0 (g x0)y:RN:natH:y - c < rH0:- r < y - cderivable_pt_lim (fun x0 : R => sum_f_R0 (tg_alt (Ratan_seq x0)) N) y (sum_f_R0 (tg_alt (Datan_seq y)) N)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> Un_cv (fun n : nat => sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y0 : R) (n : nat), Boule c0 r0 y0 -> derivable_pt_lim (fn n) y0 (fn' n y0)) -> (forall y0 : R, Boule c0 r0 y0 -> Un_cv (fun n : nat => fn n y0) (f y0)) -> CVU fn' g c0 r0 -> (forall y0 : R, Boule c0 r0 y0 -> continuity_pt g y0) -> derivable_pt_lim f x0 (g x0)y:RN:natH:y - c < rH0:- r < y - c-1 <= yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y0 : R) (n : nat), Boule c0 r0 y0 -> derivable_pt_lim (fn n) y0 (fn' n y0)) -> (forall y0 : R, Boule c0 r0 y0 -> Un_cv (fun n : nat => fn n y0) (f y0)) -> CVU fn' g c0 r0 -> (forall y0 : R, Boule c0 r0 y0 -> continuity_pt g y0) -> derivable_pt_lim f x0 (g x0)y:RN:natH:y - c < rH0:- r < y - cy < 1x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> Un_cv (fun n : nat => sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y0 : R) (n : nat), Boule c0 r0 y0 -> derivable_pt_lim (fn n) y0 (fn' n y0)) -> (forall y0 : R, Boule c0 r0 y0 -> Un_cv (fun n : nat => fn n y0) (f y0)) -> CVU fn' g c0 r0 -> (forall y0 : R, Boule c0 r0 y0 -> continuity_pt g y0) -> derivable_pt_lim f x0 (g x0)y:RN:natH:y - c < rH0:- r < y - cy < 1x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> Un_cv (fun n : nat => sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> Un_cv (fun n : nat => sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y0 : R) (n : nat), Boule c0 r0 y0 -> derivable_pt_lim (fn n) y0 (fn' n y0)) -> (forall y0 : R, Boule c0 r0 y0 -> Un_cv (fun n : nat => fn n y0) (f y0)) -> CVU fn' g c0 r0 -> (forall y0 : R, Boule c0 r0 y0 -> continuity_pt g y0) -> derivable_pt_lim f x0 (g x0)y:RH:y - c < rH0:- r < y - cUn_cv (fun n : nat => sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y0 : R) (n : nat), Boule c0 r0 y0 -> derivable_pt_lim (fn n) y0 (fn' n y0)) -> (forall y0 : R, Boule c0 r0 y0 -> Un_cv (fun n : nat => fn n y0) (f y0)) -> CVU fn' g c0 r0 -> (forall y0 : R, Boule c0 r0 y0 -> continuity_pt g y0) -> derivable_pt_lim f x0 (g x0)y:RH:y - c < rH0:- r < y - cy_gt_0:-1 < yUn_cv (fun n : nat => sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y0 : R) (n : nat), Boule c0 r0 y0 -> derivable_pt_lim (fn n) y0 (fn' n y0)) -> (forall y0 : R, Boule c0 r0 y0 -> Un_cv (fun n : nat => fn n y0) (f y0)) -> CVU fn' g c0 r0 -> (forall y0 : R, Boule c0 r0 y0 -> continuity_pt g y0) -> derivable_pt_lim f x0 (g x0)y:RH:y - c < rH0:- r < y - cy_gt_0:-1 < yy_lt_1:y < 1Un_cv (fun n : nat => sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y)x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y0 : R) (n : nat), Boule c0 r0 y0 -> derivable_pt_lim (fn n) y0 (fn' n y0)) -> (forall y0 : R, Boule c0 r0 y0 -> Un_cv (fun n : nat => fn n y0) (f y0)) -> CVU fn' g c0 r0 -> (forall y0 : R, Boule c0 r0 y0 -> continuity_pt g y0) -> derivable_pt_lim f x0 (g x0)y:RH:y - c < rH0:- r < y - cy_gt_0:-1 < yy_lt_1:y < 1eps:Reps_pos:eps > 0forall x0 : nat, (forall n : nat, (n >= x0)%nat -> forall x1 : R, -1 < x1 -> x1 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x1)) n - ps_atan x1) < eps) -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq y)) n) (ps_atan y) < epsx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)CVU (fun (N : nat) (x0 : R) => sum_f_R0 (tg_alt (Datan_seq x0)) N) (fun u : R => / (1 + u ^ 2)) c rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)Rabs c + r < 1x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)Rabs c + r < 1x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)Rabs c + r < 1x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)Rabs c + r < 1x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)Rabs c < 1 - rx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)H:Rabs c < 1 - rRabs c + r < 1x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yx:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)H:Rabs c < 1 - rRabs c + r < 1x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yintros; apply Datan_continuity. Qed.x:Rx_encad:-1 < x < 1c:Rr:posrealPcr1:Boule c r xP1:-1 < c - rP2:c + r < 1t:forall (fn fn' : nat -> R -> R) (f g : R -> R) (x0 c0 : R) (r0 : posreal), Boule c0 r0 x0 -> (forall (y : R) (n : nat), Boule c0 r0 y -> derivable_pt_lim (fn n) y (fn' n y)) -> (forall y : R, Boule c0 r0 y -> Un_cv (fun n : nat => fn n y) (f y)) -> CVU fn' g c0 r0 -> (forall y : R, Boule c0 r0 y -> continuity_pt g y) -> derivable_pt_lim f x0 (g x0)forall y : R, Boule c r y -> continuity_pt (fun u : R => / (1 + u ^ 2)) yforall x : R, -1 < x < 1 -> derivable_pt ps_atan xforall x : R, -1 < x < 1 -> derivable_pt ps_atan xexists (/(1+x^2)) ; apply derivable_pt_lim_ps_atan; assumption. Qed.x:Rx_encad:-1 < x < 1derivable_pt ps_atan xforall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) (Alt_PI / 4) < eps)forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) (Alt_PI / 4) < eps)eps:Reps_pos:eps > 0exists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) (Alt_PI / 4) < eps)eps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0exists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) (Alt_PI / 4) < eps)eps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3exists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) (Alt_PI / 4) < eps)eps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3exists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) (4 * (let (a, _) := exist_PI in a) / 4) < eps)eps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt PI_tg) N) vexists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) v < eps)eps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt PI_tg) N) vUn_cv (sum_f_R0 (tg_alt (Ratan_seq 1))) veps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt PI_tg) N) vPv':Un_cv (sum_f_R0 (tg_alt (Ratan_seq 1))) vexists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) v < eps)eps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt PI_tg) N) vforall n : nat, sum_f_R0 (tg_alt PI_tg) n = sum_f_R0 (tg_alt (Ratan_seq 1)) neps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt PI_tg) N) vPv':Un_cv (sum_f_R0 (tg_alt (Ratan_seq 1))) vexists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) v < eps)eps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt PI_tg) N) vPv':Un_cv (sum_f_R0 (tg_alt (Ratan_seq 1))) vexists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) v < eps)eps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RPv:Un_cv (fun N : nat => sum_f_R0 (tg_alt PI_tg) N) vPv':Un_cv (sum_f_R0 (tg_alt (Ratan_seq 1))) vN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3exists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) v < eps)eps:Reps_pos:eps > 0eps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RPv:Un_cv (fun N0 : nat => sum_f_R0 (tg_alt PI_tg) N0) vPv':Un_cv (sum_f_R0 (tg_alt (Ratan_seq 1))) vN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natexists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) v < eps)eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3exists alp : R, alp > 0 /\ (forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alp -> dist R_met (ps_atan x) v < eps)eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x : R, -1 < x -> x < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) n - ps_atan x) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) v < epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphadist R_met (ps_atan x) v < epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - v) < epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)) < epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)) <= Rabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) + Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v))eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) + Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)) < epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) + Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)) < epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) + Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)) < 2 / 3 * eps + eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)) + Rabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < 2 / 3 * eps + eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)) < 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)) <= Rabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + Rabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v)eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + Rabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) < 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + Rabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) < 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + Rabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) < eps / 3 + eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaeps / 3 + eps / 3 <= 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaeps / 3 + eps / 3 <= 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alpha -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaeps / 3 + eps / 3 <= 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alpha -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaD_x no_cond 1 xeps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alpha -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (x - 1) < alphaeps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaeps / 3 + eps / 3 <= 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : R, D_x no_cond 1 x0 /\ Rabs (x0 - 1) < alpha -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (x - 1) < alphaeps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaeps / 3 + eps / 3 <= 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaeps / 3 + eps / 3 <= 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaeps / 3 + eps / 3 <= 2 / 3 * epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaRabs (ps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N) < eps / 3eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha(N >= N1)%nateps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha-1 < xeps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphax < 1eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha-1 < xeps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphax < 1eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphax < 1eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - veps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alpha2 / 3 * eps + eps / 3 = epseps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - vring. Qed.eps:Reps_3_pos:eps / 3 > 0N1:natHN1:forall n : nat, (n >= N1)%nat -> forall x0 : R, -1 < x0 -> x0 < 1 -> Rabs (sum_f_R0 (tg_alt (Ratan_seq x0)) n - ps_atan x0) < eps / 3v:RN2:natHN2:forall n : nat, (n >= N2)%nat -> R_dist (sum_f_R0 (tg_alt (Ratan_seq 1)) n) v < eps / 3N:=(N1 + N2)%nat:natalpha:Ralpha_pos:alpha > 0Halpha:forall x0 : Base R_met, D_x no_cond 1 x0 /\ dist R_met x0 1 < alpha -> dist R_met (sum_f_R0 (tg_alt (Ratan_seq x0)) N) (sum_f_R0 (tg_alt (Ratan_seq 1)) N) < eps / 3x:Rx_ub:x < 1x_lb:0 < xx_bounds:R_dist x 1 < alphaps_atan x - sum_f_R0 (tg_alt (Ratan_seq x)) N + (sum_f_R0 (tg_alt (Ratan_seq x)) N - sum_f_R0 (tg_alt (Ratan_seq 1)) N) + (sum_f_R0 (tg_alt (Ratan_seq 1)) N - v) = ps_atan x - vforall x : R, -1 < x < 1 -> forall (Pratan : derivable_pt ps_atan x) (Prmymeta : derivable_pt atan x), derive_pt ps_atan x Pratan = derive_pt atan x Prmymetaforall x : R, -1 < x < 1 -> forall (Pratan : derivable_pt ps_atan x) (Prmymeta : derivable_pt atan x), derive_pt ps_atan x Pratan = derive_pt atan x Prmymetafreq:0 < tan 1forall x : R, -1 < x < 1 -> forall (Pratan : derivable_pt ps_atan x) (Prmymeta : derivable_pt atan x), derive_pt ps_atan x Pratan = derive_pt atan x Prmymetafreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xderive_pt ps_atan x Pratan = derive_pt atan x Prmymetafreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xderive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = derive_pt atan x Prmymetafreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xderive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = derive_pt atan x (derivable_pt_atan x)freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xTemp:derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = derive_pt atan x (derivable_pt_atan x)freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xTemp:derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = / (1 + x ^ 2)freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xTemp:derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)Hrew1:derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = / (1 + x ^ 2)derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = derive_pt atan x (derivable_pt_atan x)freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xTemp:derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)Hrew1:derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = / (1 + x ^ 2)derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = derive_pt atan x (derivable_pt_atan x)freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xTemp:derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)Hrew1:derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = / (1 + x ^ 2)derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = 1 / (1 + x²)freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xTemp:derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)Hrew1:derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = / (1 + x ^ 2)/ (1 + x ^ 2) = 1 / (1 + x²)freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xTemp:derivable_pt_lim ps_atan x ((fun y : R => / (1 + y ^ 2)) x)Hrew1:derive_pt ps_atan x (derivable_pt_ps_atan x x_encad) = / (1 + x ^ 2)/ (1 + x ^ 2) = 1 / (1 + x ^ 2)freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < 1 -> atan h = atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hfreq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan x-1 < x < tan 1freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hintros; reflexivity. Qed.freq:0 < tan 1x:Rx_encad:-1 < x < 1Pratan:derivable_pt ps_atan xPrmymeta:derivable_pt atan xforall h : R, -1 < h < tan 1 -> ps_atan h = ps_atan hforall x : R, 0 < x < 1 -> atan x = ps_atan xforall x : R, 0 < x < 1 -> atan x = ps_atan xx:Rx_encad:0 < x < 1atan x = ps_atan xx:Rx_encad:0 < x < 1forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1c:Rc_encad:0 < c < xderivable_pt (atan - ps_atan) cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1c:Rc_encad:0 < c < xderivable_pt atan cx:Rx_encad:0 < x < 1c:Rc_encad:0 < c < xderivable_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1c:Rc_encad:0 < c < xderivable_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1c:Rc_encad:0 < c < x-1 < c < 1x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cforall c : R, 0 < c < x -> derivable_pt id cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cforall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c < xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c < x-1 < c < 1x:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 < cc_encad2:c = x-1 < c < 1x:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c < x-1 < c < 1x:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt atan cx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = xcontinuity_pt ps_atan cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c0 : R, 0 < c0 < x -> derivable_pt (atan - ps_atan) c0pr2:forall c0 : R, 0 < c0 < x -> derivable_pt id c0c:Rc_encad1:0 = cc_encad2:c = x-1 < c < 1x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) cforall c : R, 0 <= c <= x -> continuity_pt id cx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) cid_cont:forall c : R, 0 <= c <= x -> continuity_pt id catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) cid_cont:forall c : R, 0 <= c <= x -> continuity_pt id catan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) cid_cont:forall c : R, 0 <= c <= x -> continuity_pt id cx_lb:0 < xatan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cdelta_cont:forall c : R, 0 <= c <= x -> continuity_pt (atan - ps_atan) cid_cont:forall c : R, 0 <= c <= x -> continuity_pt id cx_lb:0 < xd:RTemp:exists P : 0 < d < x, (id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d P) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d P)d_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dderive_pt (atan - ps_atan) d pr = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) d-1 < d < 1x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1derive_pt (atan - ps_atan) d pr = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1derive_pt (atan - ps_atan) d pr = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dderive_pt (atan - ps_atan) d pr = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dderive_pt (atan - ps_atan) d pr3 = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < d < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dforall h : R, 0 < h < x -> (atan - ps_atan)%F h = (atan - ps_atan)%F hx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dderive_pt (atan - ps_atan) d (derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3)) = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < d < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dforall h : R, 0 < h < x -> (atan - ps_atan)%F h = (atan - ps_atan)%F hx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dderive_pt atan d (derivable_pt_atan d) - derive_pt ps_atan d (derivable_pt_ps_atan d d_encad3) = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < d < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dforall h : R, 0 < h < x -> (atan - ps_atan)%F h = (atan - ps_atan)%F hx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dderive_pt atan d (derivable_pt_atan d) - derive_pt atan d (derivable_pt_atan d) = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d-1 < d < 1x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < d < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dforall h : R, 0 < h < x -> (atan - ps_atan)%F h = (atan - ps_atan)%F hx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d-1 < d < 1x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < d < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dforall h : R, 0 < h < x -> (atan - ps_atan)%F h = (atan - ps_atan)%F hx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < d < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dforall h : R, 0 < h < x -> (atan - ps_atan)%F h = (atan - ps_atan)%F hx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) d0 < d < xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dforall h : R, 0 < h < x -> (atan - ps_atan)%F h = (atan - ps_atan)%F hx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)pr:derivable_pt (atan - ps_atan) dd_encad3:-1 < d < 1pr3:=derivable_pt_minus atan ps_atan d (derivable_pt_atan d) (derivable_pt_ps_atan d d_encad3):derivable_pt (atan - ps_atan) dforall h : R, 0 < h < x -> (atan - ps_atan)%F h = (atan - ps_atan)%F hx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0atan 0 = 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0- PI / 2 < atan 0 < PI / 2x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0- PI / 2 < 0 < PI / 2x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0tan (atan 0) = tan 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0- PI / 2 < 0 < PI / 2x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0tan (atan 0) = tan 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0tan (atan 0) = tan 0x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 0atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 00 = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad) -> atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 00 = (atan x - ps_atan x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad) -> atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 00 = (atan x - ps_atan x - (atan 0 - ps_atan 0)) * derive_pt id d (pr2 d d_encad) -> atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 00 = (atan x - ps_atan x) * derive_pt id d (pr2 d d_encad) -> atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 00 = (atan x - ps_atan x) * 1 -> atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 01 = derive_pt id d (pr2 d d_encad)x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 00 = atan x - ps_atan x -> atan x = ps_atan xx:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 01 = derive_pt id d (pr2 d d_encad)x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 01 = derive_pt id d (pr2 d d_encad)x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 01 = derive_pt id d (derivable_pt_id d)x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 0id = idtauto. Qed.x:Rx_encad:0 < x < 1pr1:forall c : R, 0 < c < x -> derivable_pt (atan - ps_atan) cpr2:forall c : R, 0 < c < x -> derivable_pt id cd:Rd_encad:0 < d < xMain:(id x - id 0) * derive_pt (atan - ps_atan) d (pr1 d d_encad) = ((atan - ps_atan)%F x - (atan - ps_atan)%F 0) * derive_pt id d (pr2 d d_encad)Temp:forall pr : derivable_pt (atan - ps_atan) d, derive_pt (atan - ps_atan) d pr = 0iatan0:atan 0 = 0id = idAlt_PI = PIAlt_PI = PIAlt_PI / 4 = PI / 4H:0 < PI / 6Alt_PI / 4 = PI / 4H:0 < PI / 6t1:1 < PI / 2Alt_PI / 4 = PI / 4H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4Alt_PI / 4 = PI / 4H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIAlt_PI / 4 = PI / 4H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2Alt_PI / 4 = PI / 4H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsRabs (Alt_PI / 4 - PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epscontinuity_pt atan 1H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1R_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1R_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1exists eps' eps'' : R, eps' + eps'' <= eps /\ 0 < eps' /\ 0 < eps''H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1Xe:exists eps' eps'' : R, eps' + eps'' <= eps /\ 0 < eps' /\ 0 < eps''R_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1Xe:exists eps' eps'' : R, eps' + eps'' <= eps /\ 0 < eps' /\ 0 < eps''R_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''R_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'R_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''R_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''0 < Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2)) < 1 /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))0 < Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2)) < 1 /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))0 < Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2)) < 1 /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H3:1 - alpha / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)0 < Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2)) < 1 /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H3:1 - alpha / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H4:1 - beta / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)0 < Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2)) < 1 /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H3:1 - alpha / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H4:1 - beta / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H5:Rmax (1 - alpha / 2) (1 - beta / 2) < 10 < Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2)) < 1 /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H3:1 - alpha / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H4:1 - beta / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H5:Rmax (1 - alpha / 2) (1 - beta / 2) < 1R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H3:1 - alpha / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H4:1 - beta / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H5:Rmax (1 - alpha / 2) (1 - beta / 2) < 10 <= 1 - Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H3:1 - alpha / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H4:1 - beta / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H5:Rmax (1 - alpha / 2) (1 - beta / 2) < 1H6:0 <= 1 - Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H3:1 - alpha / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H4:1 - beta / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H5:Rmax (1 - alpha / 2) (1 - beta / 2) < 1H6:Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2)) <= 10 <= 1 - Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H3:1 - alpha / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H4:1 - beta / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H5:Rmax (1 - alpha / 2) (1 - beta / 2) < 1H6:0 <= 1 - Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''H1:/ 2 <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H2:Rmax (1 - alpha / 2) (1 - beta / 2) <= Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))H3:1 - alpha / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H4:1 - beta / 2 <= Rmax (1 - alpha / 2) (1 - beta / 2)H5:Rmax (1 - alpha / 2) (1 - beta / 2) < 1H6:0 <= 1 - Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < alpha /\ R_dist (Rmax (/ 2) (Rmax (1 - alpha / 2) (1 - beta / 2))) 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''Xa:exists a : R, 0 < a < 1 /\ R_dist a 1 < alpha /\ R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < betaR_dist (Alt_PI / 4) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < betaR_dist (Alt_PI / 4) (ps_atan a) + R_dist (ps_atan a) (PI / 4) < epsH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < betaR_dist (Alt_PI / 4) (ps_atan a) + R_dist (ps_atan a) (PI / 4) < eps' + eps''H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < betaR_dist (Alt_PI / 4) (ps_atan a) < eps'H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < betaR_dist (ps_atan a) (PI / 4) < eps''H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < betaR_dist (ps_atan a) (PI / 4) < eps''H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < betaR_dist (atan a) (PI / 4) < eps''H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < beta0 < a < 1H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < betaD_x no_cond 1 a /\ dist R_met a 1 < betaH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < beta0 < a < 1H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < betaD_x no_cond 1 aH:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < beta0 < a < 1split; assumption. Qed.H:0 < PI / 6t1:1 < PI / 2t2:PI <= 4m:0 < Alt_PIH0:- PI / 2 < 1 < PI / 2eps:Rep:0 < epsca:continuity_pt atan 1eps', eps'':Reps_ineq:eps' + eps'' <= epsep':0 < eps'ep'':0 < eps''alpha:Ra0:alpha > 0Palpha:forall x : R, x < 1 -> 0 < x -> R_dist x 1 < alpha -> dist R_met (ps_atan x) (Alt_PI / 4) < eps'beta:Rb0:beta > 0Pbeta:forall x : Base R_met, D_x no_cond 1 x /\ dist R_met x 1 < beta -> dist R_met (atan x) (atan 1) < eps''a:RPa0:0 < aPa1:a < 1P1:R_dist a 1 < alphaP2:R_dist a 1 < beta0 < a < 1forall N : nat, sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= PI / 4 <= sum_f_R0 (tg_alt PI_tg) (2 * N)intros; rewrite <- Alt_PI_eq; apply Alt_PI_ineq. Qed.forall N : nat, sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= PI / 4 <= sum_f_R0 (tg_alt PI_tg) (2 * N)