Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(*********************************************************)
Axiomatisation of the classical reals
(*********************************************************) Require Export ZArith_base. Require Export Rdefinitions. Declare Scope R_scope. Local Open Scope R_scope. (*********************************************************)
(*********************************************************)
(*********************************************************)
(*********************************************************) (**********) Axiom Rplus_comm : forall r1 r2:R, r1 + r2 = r2 + r1. Hint Resolve Rplus_comm: real. (**********) Axiom Rplus_assoc : forall r1 r2 r3:R, r1 + r2 + r3 = r1 + (r2 + r3). Hint Resolve Rplus_assoc: real. (**********) Axiom Rplus_opp_r : forall r:R, r + - r = 0. Hint Resolve Rplus_opp_r: real. (**********) Axiom Rplus_0_l : forall r:R, 0 + r = r. Hint Resolve Rplus_0_l: real. (***********************************************************)
(***********************************************************) (**********) Axiom Rmult_comm : forall r1 r2:R, r1 * r2 = r2 * r1. Hint Resolve Rmult_comm: real. (**********) Axiom Rmult_assoc : forall r1 r2 r3:R, r1 * r2 * r3 = r1 * (r2 * r3). Hint Resolve Rmult_assoc: real. (**********) Axiom Rinv_l : forall r:R, r <> 0 -> / r * r = 1. Hint Resolve Rinv_l: real. (**********) Axiom Rmult_1_l : forall r:R, 1 * r = r. Hint Resolve Rmult_1_l: real. (**********) Axiom R1_neq_R0 : 1 <> 0. Hint Resolve R1_neq_R0: real. (*********************************************************)
(*********************************************************) (**********) Axiom Rmult_plus_distr_l : forall r1 r2 r3:R, r1 * (r2 + r3) = r1 * r2 + r1 * r3. Hint Resolve Rmult_plus_distr_l: real. (*********************************************************)
(*********************************************************)
(*********************************************************)
(*********************************************************) (**********) Axiom total_order_T : forall r1 r2:R, {r1 < r2} + {r1 = r2} + {r1 > r2}. (*********************************************************)
(*********************************************************) (**********) Axiom Rlt_asym : forall r1 r2:R, r1 < r2 -> ~ r2 < r1. (**********) Axiom Rlt_trans : forall r1 r2 r3:R, r1 < r2 -> r2 < r3 -> r1 < r3. (**********) Axiom Rplus_lt_compat_l : forall r r1 r2:R, r1 < r2 -> r + r1 < r + r2. (**********) Axiom Rmult_lt_compat_l : forall r r1 r2:R, 0 < r -> r1 < r2 -> r * r1 < r * r2. Hint Resolve Rlt_asym Rplus_lt_compat_l Rmult_lt_compat_l: real. (**********************************************************)
(**********************************************************) (**********) Fixpoint INR (n:nat) : R := match n with | O => 0 | S O => 1 | S n => INR n + 1 end. Arguments INR n%nat. (**********************************************************)
(**********************************************************) (**********) Axiom archimed : forall r:R, IZR (up r) > r /\ IZR (up r) - r <= 1. (**********************************************************)
(**********************************************************) (**********) Definition is_upper_bound (E:R -> Prop) (m:R) := forall x:R, E x -> x <= m. (**********) Definition bound (E:R -> Prop) := exists m : R, is_upper_bound E m. (**********) Definition is_lub (E:R -> Prop) (m:R) := is_upper_bound E m /\ (forall b:R, is_upper_bound E b -> m <= b). (**********) Axiom completeness : forall E:R -> Prop, bound E -> (exists x : R, E x) -> { m:R | is_lub E m }.