Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(*********************************************************)
Axiomatisation of the classical reals
(*********************************************************)

Require Export ZArith_base.
Require Export Rdefinitions.
Declare Scope R_scope.
Local Open Scope R_scope.

(*********************************************************)

Field axioms

(*********************************************************)

(*********************************************************)

Addition

(*********************************************************)

(**********)
Axiom Rplus_comm : forall r1 r2:R, r1 + r2 = r2 + r1.
Hint Resolve Rplus_comm: real.

(**********)
Axiom Rplus_assoc : forall r1 r2 r3:R, r1 + r2 + r3 = r1 + (r2 + r3).
Hint Resolve Rplus_assoc: real.

(**********)
Axiom Rplus_opp_r : forall r:R, r + - r = 0.
Hint Resolve Rplus_opp_r: real.

(**********)
Axiom Rplus_0_l : forall r:R, 0 + r = r.
Hint Resolve Rplus_0_l: real.

(***********************************************************)

Multiplication

(***********************************************************)

(**********)
Axiom Rmult_comm : forall r1 r2:R, r1 * r2 = r2 * r1.
Hint Resolve Rmult_comm: real.

(**********)
Axiom Rmult_assoc : forall r1 r2 r3:R, r1 * r2 * r3 = r1 * (r2 * r3).
Hint Resolve Rmult_assoc: real.

(**********)
Axiom Rinv_l : forall r:R, r <> 0 -> / r * r = 1.
Hint Resolve Rinv_l: real.

(**********)
Axiom Rmult_1_l : forall r:R, 1 * r = r.
Hint Resolve Rmult_1_l: real.

(**********)
Axiom R1_neq_R0 : 1 <> 0.
Hint Resolve R1_neq_R0: real.

(*********************************************************)

Distributivity

(*********************************************************)

(**********)
Axiom
  Rmult_plus_distr_l : forall r1 r2 r3:R, r1 * (r2 + r3) = r1 * r2 + r1 * r3.
Hint Resolve Rmult_plus_distr_l: real.

(*********************************************************)

Order axioms

(*********************************************************)
(*********************************************************)

Total Order

(*********************************************************)

(**********)
Axiom total_order_T : forall r1 r2:R, {r1 < r2} + {r1 = r2} + {r1 > r2}.

(*********************************************************)

Lower

(*********************************************************)

(**********)
Axiom Rlt_asym : forall r1 r2:R, r1 < r2 -> ~ r2 < r1.

(**********)
Axiom Rlt_trans : forall r1 r2 r3:R, r1 < r2 -> r2 < r3 -> r1 < r3.

(**********)
Axiom Rplus_lt_compat_l : forall r r1 r2:R, r1 < r2 -> r + r1 < r + r2.

(**********)
Axiom
  Rmult_lt_compat_l : forall r r1 r2:R, 0 < r -> r1 < r2 -> r * r1 < r * r2.

Hint Resolve Rlt_asym Rplus_lt_compat_l Rmult_lt_compat_l: real.

(**********************************************************)

Injection from N to R

(**********************************************************)

(**********)
Fixpoint INR (n:nat) : R :=
  match n with
  | O => 0
  | S O => 1
  | S n => INR n + 1
  end.
Arguments INR n%nat.


(**********************************************************)

R Archimedean

(**********************************************************)

(**********)
Axiom archimed : forall r:R, IZR (up r) > r /\ IZR (up r) - r <= 1.

(**********************************************************)

R Complete

(**********************************************************)

(**********)
Definition is_upper_bound (E:R -> Prop) (m:R) := forall x:R, E x -> x <= m.

(**********)
Definition bound (E:R -> Prop) :=  exists m : R, is_upper_bound E m.

(**********)
Definition is_lub (E:R -> Prop) (m:R) :=
  is_upper_bound E m /\ (forall b:R, is_upper_bound E b -> m <= b).

(**********)
Axiom
  completeness :
    forall E:R -> Prop,
      bound E -> (exists x : R, E x) -> { m:R | is_lub E m }.