Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(*********************************************************)
Definitions for the axiomatization
(*********************************************************) Require Export ZArith_base. Parameter R : Set. (* Declare primitive numeral notations for Scope R_scope *) Declare Scope R_scope. Declare ML Module "r_syntax_plugin". (* Declare Scope R_scope with Key R *) Delimit Scope R_scope with R. (* Automatically open scope R_scope for arguments of type R *) Bind Scope R_scope with R. Local Open Scope R_scope. Parameter R0 : R. Parameter R1 : R. Parameter Rplus : R -> R -> R. Parameter Rmult : R -> R -> R. Parameter Ropp : R -> R. Parameter Rinv : R -> R. Parameter Rlt : R -> R -> Prop. Parameter up : R -> Z. Infix "+" := Rplus : R_scope. Infix "*" := Rmult : R_scope. Notation "- x" := (Ropp x) : R_scope. Notation "/ x" := (Rinv x) : R_scope. Infix "<" := Rlt : R_scope. (***********************************************************) (**********) Definition Rgt (r1 r2:R) : Prop := r2 < r1. (**********) Definition Rle (r1 r2:R) : Prop := r1 < r2 \/ r1 = r2. (**********) Definition Rge (r1 r2:R) : Prop := Rgt r1 r2 \/ r1 = r2. (**********) Definition Rminus (r1 r2:R) : R := r1 + - r2. (**********) Definition Rdiv (r1 r2:R) : R := r1 * / r2. (**********) Infix "-" := Rminus : R_scope. Infix "/" := Rdiv : R_scope. Infix "<=" := Rle : R_scope. Infix ">=" := Rge : R_scope. Infix ">" := Rgt : R_scope. Notation "x <= y <= z" := (x <= y /\ y <= z) : R_scope. Notation "x <= y < z" := (x <= y /\ y < z) : R_scope. Notation "x < y < z" := (x < y /\ y < z) : R_scope. Notation "x < y <= z" := (x < y /\ y <= z) : R_scope. (**********************************************************)
(**********************************************************) (* compact representation for 2*p *) Fixpoint IPR_2 (p:positive) : R := match p with | xH => R1 + R1 | xO p => (R1 + R1) * IPR_2 p | xI p => (R1 + R1) * (R1 + IPR_2 p) end. Definition IPR (p:positive) : R := match p with | xH => R1 | xO p => IPR_2 p | xI p => R1 + IPR_2 p end. Arguments IPR p%positive : simpl never. (**********) Definition IZR (z:Z) : R := match z with | Z0 => R0 | Zpos n => IPR n | Zneg n => - IPR n end. Arguments IZR z%Z : simpl never.