Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(*********************************************************)
Definition of the derivative,continuity
(* *) (*********************************************************) Require Import Rbase. Require Import Rfunctions. Require Import Rlimit. Require Import Lra. Require Import Omega. Local Open Scope R_scope. (*********) Definition D_x (D:R -> Prop) (y x:R) : Prop := D x /\ y <> x. (*********) Definition continue_in (f:R -> R) (D:R -> Prop) (x0:R) : Prop := limit1_in f (D_x D x0) (f x0) x0. (*********) Definition D_in (f d:R -> R) (D:R -> Prop) (x0:R) : Prop := limit1_in (fun x:R => (f x - f x0) / (x - x0)) (D_x D x0) (d x0) x0. (*********)forall (f d : R -> R) (D : R -> Prop) (x0 : R), D_in f d D x0 -> continue_in f D x0forall (f d : R -> R) (D : R -> Prop) (x0 : R), D_in f d D x0 -> continue_in f D x0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 = 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 = 0Rmin 1 x > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 = 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin 1 x -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 = 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin 1 x -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH7:D x1H8:x0 <> x1R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs ((f x1 - f x0) * / (x1 - x0) - 0) < epsH7:D x1H8:x0 <> x1Rabs (f x1 - f x0) < eps * Rabs (x1 - x0) -> Rabs (f x1 - f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs ((f x1 - f x0) * / (x1 - x0) - 0) < epsH7:D x1H8:x0 <> x1Rabs (f x1 - f x0) < eps * Rabs (x1 - x0)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs ((f x1 - f x0) * / (x1 - x0) - 0) < epsH7:D x1H8:x0 <> x1Rabs (f x1 - f x0) < eps * Rabs (x1 - x0)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs (f x1 - f x0) * Rabs (/ (x1 - x0)) < epsH7:D x1H8:x0 <> x1x1 - x0 <> 0 -> Rabs (f x1 - f x0) < eps * Rabs (x1 - x0)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs (f x1 - f x0) * Rabs (/ (x1 - x0)) < epsH7:D x1H8:x0 <> x1x1 - x0 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs (f x1 - f x0) * / Rabs (x1 - x0) < epsH7:D x1H8:x0 <> x1H9:x1 - x0 <> 0H10:Rabs (f x1 - f x0) * 1 < Rabs (x1 - x0) * epsRabs (f x1 - f x0) < eps * Rabs (x1 - x0)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs (f x1 - f x0) * / Rabs (x1 - x0) < epsH7:D x1H8:x0 <> x1H9:x1 - x0 <> 0H10:Rabs (f x1 - f x0) * (/ Rabs (x1 - x0) * Rabs (x1 - x0)) < Rabs (x1 - x0) * epsRabs (x1 - x0) <> 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs (f x1 - f x0) * Rabs (/ (x1 - x0)) < epsH7:D x1H8:x0 <> x1x1 - x0 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs (f x1 - f x0) * / Rabs (x1 - x0) < epsH7:D x1H8:x0 <> x1H9:x1 - x0 <> 0H10:Rabs (f x1 - f x0) * (/ Rabs (x1 - x0) * Rabs (x1 - x0)) < Rabs (x1 - x0) * epsRabs (x1 - x0) <> 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs (f x1 - f x0) * Rabs (/ (x1 - x0)) < epsH7:D x1H8:x0 <> x1x1 - x0 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 = 0x1:RH3:D x1 /\ x0 <> x1H4:R_dist x1 x0 < Rmin 1 xH5:R_dist x1 x0 < 1H6:R_dist x1 x0 < xH1:Rabs (f x1 - f x0) * Rabs (/ (x1 - x0)) < epsH7:D x1H8:x0 <> x1x1 - x0 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)(**)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0exists alp : R, alp > 0 /\ (forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < alp -> R_dist (f x1) (f x0) < eps)f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0Rmin (/ 2) x > 0 -> Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0Rmin (/ 2) x > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0eps * / Rabs (2 * d x0) > 0 -> Rmin (/ 2) x > 0 -> Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0eps * / Rabs (2 * d x0) > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0Rmin (/ 2) x > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0eps * / Rabs (2 * d x0) > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0Rmin (/ 2) x > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0/ Rabs (2 * d x0) > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0Rmin (/ 2) x > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 02 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0d x0 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0Rmin (/ 2) x > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0d x0 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0Rmin (/ 2) x > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0Rmin (/ 2) x > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0a:Rmin (/ 2) x > 0 -> / 2 > 0 /\ x > 0b:/ 2 > 0 /\ x > 0 -> Rmin (/ 2) x > 00 < 2 -> Rmin (/ 2) x > 0f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0a:Rmin (/ 2) x > 0 -> / 2 > 0 /\ x > 0b:/ 2 > 0 /\ x > 0 -> Rmin (/ 2) x > 00 < 2f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0a:Rmin (/ 2) x > 0 -> / 2 > 0 /\ x > 0b:/ 2 > 0 /\ x > 0 -> Rmin (/ 2) x > 00 < 2f, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H1:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((f x1 - f x0) * / (x1 - x0)) (d x0) < epsH2:d x0 <> 0forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < Rmin (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) -> R_dist (f x1) (f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 <> 0x1:RH3:D x1 /\ x0 <> x1H6:R_dist x1 x0 < eps * / Rabs (2 * d x0)H7:R_dist x1 x0 < / 2H8:R_dist x1 x0 < xH4:D x1H5:x1 <> x0H9:x1 - x0 <> 0H10:Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0)) <= Rabs (f x1 - f x0 - d x0 * (x1 - x0))H1:Rabs (f x1 - f x0) < Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * epsRabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps < eps -> Rabs (f x1 - f x0) < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 <> 0x1:RH3:D x1 /\ x0 <> x1H6:R_dist x1 x0 < eps * / Rabs (2 * d x0)H7:R_dist x1 x0 < / 2H8:R_dist x1 x0 < xH4:D x1H5:x1 <> x0H9:x1 - x0 <> 0H10:Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0)) <= Rabs (f x1 - f x0 - d x0 * (x1 - x0))H1:Rabs (f x1 - f x0) < Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * epsRabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps < epsf, d:R -> RD:R -> Propx0, eps:RH0:eps > 0x:RH:x > 0H2:d x0 <> 0x1:RH3:D x1 /\ x0 <> x1H6:R_dist x1 x0 < eps * / Rabs (2 * d x0)H7:R_dist x1 x0 < / 2H8:R_dist x1 x0 < xH4:D x1H5:x1 <> x0H9:x1 - x0 <> 0H10:Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0)) <= Rabs (f x1 - f x0 - d x0 * (x1 - x0))H1:Rabs (f x1 - f x0) < Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * epsRabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps < epsf, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:0 < Rabs (d x0)H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < Rabs (d x0) * (eps * / (Rabs 2 * Rabs (d x0)))Rabs 2 <> 0 -> Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps < epsf, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:0 < Rabs (d x0)H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < Rabs (d x0) * (eps * / (Rabs 2 * Rabs (d x0)))Rabs 2 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:Rabs (d x0) > 0H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < eps * / Rabs 2H6:Rabs 2 <> 0Rabs 2 = 2 -> Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps < epsf, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:Rabs (d x0) > 0H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < eps * / Rabs 2H6:Rabs 2 <> 0Rabs 2 = 2f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:0 < Rabs (d x0)H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < Rabs (d x0) * (eps * / (Rabs 2 * Rabs (d x0)))Rabs 2 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:Rabs (d x0) > 0H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < eps * / Rabs 2H6:Rabs 2 <> 0Rabs 2 = 2f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:0 < Rabs (d x0)H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < Rabs (d x0) * (eps * / (Rabs 2 * Rabs (d x0)))Rabs 2 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:Rabs (d x0) > 0H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < eps * / Rabs 2H6:Rabs 2 <> 0Hlt:2 < 0- (2) = 2f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:0 < Rabs (d x0)H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < Rabs (d x0) * (eps * / (Rabs 2 * Rabs (d x0)))Rabs 2 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:Rabs (d x0) > 0H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < eps * / Rabs 2H6:Rabs 2 <> 0Hlt:2 < 00 < 2 -> - (2) = 2f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:Rabs (d x0) > 0H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < eps * / Rabs 2H6:Rabs 2 <> 0Hlt:2 < 00 < 2f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:0 < Rabs (d x0)H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < Rabs (d x0) * (eps * / (Rabs 2 * Rabs (d x0)))Rabs 2 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:Rabs (d x0) > 0H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < eps * / Rabs 2H6:Rabs 2 <> 0Hlt:2 < 00 < 2f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:0 < Rabs (d x0)H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < Rabs (d x0) * (eps * / (Rabs 2 * Rabs (d x0)))Rabs 2 <> 0f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:0 < Rabs (d x0)H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < Rabs (d x0) * (eps * / (Rabs 2 * Rabs (d x0)))Rabs 2 <> 0discrR. Qed. (*********)f, d:R -> RD:R -> Propx0, eps:RH0:0 < epsx:RH:x > 0H2:d x0 <> 0x1:RH8:R_dist x1 x0 < xH4:D x1H9:x1 - x0 <> 0H1:0 < Rabs (d x0)H3:Rabs (x1 - x0) * eps < eps * / 2H5:Rabs (d x0 * (x1 - x0)) < Rabs (d x0) * (eps * / (Rabs 2 * Rabs (d x0)))2 <> 0forall (D : R -> Prop) (y x0 : R), D_in (fun _ : R => y) (fun _ : R => 0) D x0forall (D : R -> Prop) (y x0 : R), D_in (fun _ : R => y) (fun _ : R => 0) D x0D:R -> Propy, x0, eps:RH:eps > 0forall x : R, D_x D x0 x /\ R_dist x x0 < eps -> R_dist ((y - y) * / (x - x0)) 0 < epsD:R -> Propy, x0, eps:RH:eps > 0x:RH0:D_x D x0 x /\ R_dist x x0 < epsr:0 < 0- 0 < epsD:R -> Propy, x0, eps:RH:eps > 0x:RH0:D_x D x0 x /\ R_dist x x0 < epsr:0 >= 00 < epsD:R -> Propy, x0, eps:RH:eps > 0x:RH0:D_x D x0 x /\ R_dist x x0 < epsr:0 < 0~ 0 < 0D:R -> Propy, x0, eps:RH:eps > 0x:RH0:D_x D x0 x /\ R_dist x x0 < epsr:0 >= 00 < epsunfold Rgt in H0; assumption. Qed. (*********)D:R -> Propy, x0, eps:RH:eps > 0x:RH0:D_x D x0 x /\ R_dist x x0 < epsr:0 >= 00 < epsforall (D : R -> Prop) (x0 : R), D_in (fun x : R => x) (fun _ : R => 1) D x0forall (D : R -> Prop) (x0 : R), D_in (fun x : R => x) (fun _ : R => 1) D x0D:R -> Propx0, eps:RH:eps > 0forall x : R, D_x D x0 x /\ R_dist x x0 < eps -> R_dist ((x - x0) * / (x - x0)) 1 < epsD:R -> Propx0, eps:RH:eps > 0x:RH0:D x /\ x0 <> xH1:R_dist x x0 < epsH2:D xH3:x0 <> xHlt:0 < 0- 0 < epsD:R -> Propx0, eps:RH:eps > 0x:RH0:D x /\ x0 <> xH1:R_dist x x0 < epsH2:D xH3:x0 <> xHge:0 >= 00 < epsD:R -> Propx0, eps:RH:eps > 0x:RH0:D x /\ x0 <> xH1:R_dist x x0 < epsH2:D xH3:x0 <> xHlt:0 < 0~ 0 < 0D:R -> Propx0, eps:RH:eps > 0x:RH0:D x /\ x0 <> xH1:R_dist x x0 < epsH2:D xH3:x0 <> xHge:0 >= 00 < epsunfold Rgt in H; assumption. Qed. (*********)D:R -> Propx0, eps:RH:eps > 0x:RH0:D x /\ x0 <> xH1:R_dist x x0 < epsH2:D xH3:x0 <> xHge:0 >= 00 < epsforall (D : R -> Prop) (df dg f g : R -> R) (x0 : R), D_in f df D x0 -> D_in g dg D x0 -> D_in (fun x : R => f x + g x) (fun x : R => df x + dg x) D x0forall (D : R -> Prop) (df dg f g : R -> R) (x0 : R), D_in f df D x0 -> D_in g dg D x0 -> D_in (fun x : R => f x + g x) (fun x : R => df x + dg x) D x0D:R -> Propdf, dg, f, g:R -> Rx0, eps:RH0:eps > 0x:RH:x > 0x1:RH2:D_x D x0 x1 /\ R_dist x1 x0 < xH1:R_dist ((f x1 - f x0 + (g x1 - g x0)) * / (x1 - x0)) (df x0 + dg x0) < epsf x1 - f x0 + (g x1 - g x0) = f x1 + g x1 - (f x0 + g x0) -> R_dist ((f x1 + g x1 - (f x0 + g x0)) / (x1 - x0)) (df x0 + dg x0) < epsD:R -> Propdf, dg, f, g:R -> Rx0, eps:RH0:eps > 0x:RH:x > 0x1:RH2:D_x D x0 x1 /\ R_dist x1 x0 < xH1:R_dist ((f x1 - f x0 + (g x1 - g x0)) * / (x1 - x0)) (df x0 + dg x0) < epsf x1 - f x0 + (g x1 - g x0) = f x1 + g x1 - (f x0 + g x0)ring. Qed. (*********)D:R -> Propdf, dg, f, g:R -> Rx0, eps:RH0:eps > 0x:RH:x > 0x1:RH2:D_x D x0 x1 /\ R_dist x1 x0 < xH1:R_dist ((f x1 - f x0 + (g x1 - g x0)) * / (x1 - x0)) (df x0 + dg x0) < epsf x1 - f x0 + (g x1 - g x0) = f x1 + g x1 - (f x0 + g x0)forall (D : R -> Prop) (df dg f g : R -> R) (x0 : R), D_in f df D x0 -> D_in g dg D x0 -> D_in (fun x : R => f x * g x) (fun x : R => df x * g x + f x * dg x) D x0forall (D : R -> Prop) (df dg f g : R -> R) (x0 : R), D_in f df D x0 -> D_in g dg D x0 -> D_in (fun x : R => f x * g x) (fun x : R => df x * g x + f x * dg x) D x0D:R -> Propdf, dg, f, g:R -> Rx0:RH:limit1_in (fun x : R => (f x - f x0) / (x - x0)) (D_x D x0) (df x0) x0H0:limit1_in (fun x : R => (g x - g x0) / (x - x0)) (D_x D x0) (dg x0) x0H1:D_in f df D x0H2:D_in g dg D x0H3:limit1_in f (D_x D x0) (f x0) x0H4:limit1_in (fun x : R => (g x - g x0) * / (x - x0) * f x) (D_x D x0) (dg x0 * f x0) x0limit1_in (fun _ : R => g x0) (D_x D x0) (g x0) x0 -> limit1_in (fun x : R => (f x * g x - f x0 * g x0) / (x - x0)) (D_x D x0) (df x0 * g x0 + f x0 * dg x0) x0D:R -> Propdf, dg, f, g:R -> Rx0:RH:limit1_in (fun x : R => (f x - f x0) / (x - x0)) (D_x D x0) (df x0) x0H0:limit1_in (fun x : R => (g x - g x0) / (x - x0)) (D_x D x0) (dg x0) x0H1:D_in f df D x0H2:D_in g dg D x0H3:limit1_in f (D_x D x0) (f x0) x0H4:limit1_in (fun x : R => (g x - g x0) * / (x - x0) * f x) (D_x D x0) (dg x0 * f x0) x0limit1_in (fun _ : R => g x0) (D_x D x0) (g x0) x0D:R -> Propdf, dg, f, g:R -> Rx0, eps:RH0:eps > 0x:RH:x > 0x1:RH2:D_x D x0 x1 /\ R_dist x1 x0 < xH1:R_dist (((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1) * / (x1 - x0)) (df x0 * g x0 + f x0 * dg x0) < eps(f x1 - f x0) * g x0 + (g x1 - g x0) * f x1 = f x1 * g x1 - f x0 * g x0 -> R_dist ((f x1 * g x1 - f x0 * g x0) / (x1 - x0)) (df x0 * g x0 + f x0 * dg x0) < epsD:R -> Propdf, dg, f, g:R -> Rx0, eps:RH0:eps > 0x:RH:x > 0x1:RH2:D_x D x0 x1 /\ R_dist x1 x0 < xH1:R_dist (((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1) * / (x1 - x0)) (df x0 * g x0 + f x0 * dg x0) < eps(f x1 - f x0) * g x0 + (g x1 - g x0) * f x1 = f x1 * g x1 - f x0 * g x0D:R -> Propdf, dg, f, g:R -> Rx0:RH:limit1_in (fun x : R => (f x - f x0) / (x - x0)) (D_x D x0) (df x0) x0H0:limit1_in (fun x : R => (g x - g x0) / (x - x0)) (D_x D x0) (dg x0) x0H1:D_in f df D x0H2:D_in g dg D x0H3:limit1_in f (D_x D x0) (f x0) x0H4:limit1_in (fun x : R => (g x - g x0) * / (x - x0) * f x) (D_x D x0) (dg x0 * f x0) x0limit1_in (fun _ : R => g x0) (D_x D x0) (g x0) x0D:R -> Propdf, dg, f, g:R -> Rx0, eps:RH0:eps > 0x:RH:x > 0x1:RH2:D_x D x0 x1 /\ R_dist x1 x0 < xH1:R_dist (((f x1 - f x0) * g x0 + (g x1 - g x0) * f x1) * / (x1 - x0)) (df x0 * g x0 + f x0 * dg x0) < eps(f x1 - f x0) * g x0 + (g x1 - g x0) * f x1 = f x1 * g x1 - f x0 * g x0D:R -> Propdf, dg, f, g:R -> Rx0:RH:limit1_in (fun x : R => (f x - f x0) / (x - x0)) (D_x D x0) (df x0) x0H0:limit1_in (fun x : R => (g x - g x0) / (x - x0)) (D_x D x0) (dg x0) x0H1:D_in f df D x0H2:D_in g dg D x0H3:limit1_in f (D_x D x0) (f x0) x0H4:limit1_in (fun x : R => (g x - g x0) * / (x - x0) * f x) (D_x D x0) (dg x0 * f x0) x0limit1_in (fun _ : R => g x0) (D_x D x0) (g x0) x0unfold limit1_in; unfold limit_in; simpl; intros; split with eps; split; auto; intros; elim (R_dist_refl (g x0) (g x0)); intros a b; rewrite (b (eq_refl (g x0))); unfold Rgt in H; assumption. Qed. (*********)D:R -> Propdf, dg, f, g:R -> Rx0:RH:limit1_in (fun x : R => (f x - f x0) / (x - x0)) (D_x D x0) (df x0) x0H0:limit1_in (fun x : R => (g x - g x0) / (x - x0)) (D_x D x0) (dg x0) x0H1:D_in f df D x0H2:D_in g dg D x0H3:limit1_in f (D_x D x0) (f x0) x0H4:limit1_in (fun x : R => (g x - g x0) * / (x - x0) * f x) (D_x D x0) (dg x0 * f x0) x0limit1_in (fun _ : R => g x0) (D_x D x0) (g x0) x0forall (D : R -> Prop) (f df : R -> R) (x0 a : R), D_in f df D x0 -> D_in (fun x : R => a * f x) (fun x : R => a * df x) D x0intros; generalize (Dmult D (fun _:R => 0) df (fun _:R => a) f x0 (Dconst D a x0) H); unfold D_in; intros; rewrite (Rmult_0_l (f x0)) in H0; rewrite (let (H1, H2) := Rplus_ne (a * df x0) in H2) in H0; assumption. Qed. (*********)forall (D : R -> Prop) (f df : R -> R) (x0 a : R), D_in f df D x0 -> D_in (fun x : R => a * f x) (fun x : R => a * df x) D x0forall (D : R -> Prop) (f df : R -> R) (x0 : R), D_in f df D x0 -> D_in (fun x : R => - f x) (fun x : R => - df x) D x0forall (D : R -> Prop) (f df : R -> R) (x0 : R), D_in f df D x0 -> D_in (fun x : R => - f x) (fun x : R => - df x) D x0D:R -> Propf, df:R -> Rx0:RH:D_in f df D x0eps:RH1:eps > 0x:RH0:x > 0H2:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((-1 * f x1 - -1 * f x0) / (x1 - x0)) (-1 * df x0) < epsforall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((- f x1 - - f x0) / (x1 - x0)) (- df x0) < epsD:R -> Propf, df:R -> Rx0:RH:D_in f df D x0eps:RH1:eps > 0x:RH0:x > 0x1:RH3:D_x D x0 x1 /\ R_dist x1 x0 < xH2:R_dist ((-1 * f x1 - -1 * f x0) / (x1 - x0)) (-1 * df x0) < epsR_dist ((- f x1 - - f x0) / (x1 - x0)) (- df x0) < epsD:R -> Propf, df:R -> Rx0:RH:D_in f df D x0eps:RH1:eps > 0x:RH0:x > 0x1:RH3:D_x D x0 x1 /\ R_dist x1 x0 < xH2:R_dist ((-1 * f x1 - -1 * f x0) / (x1 - x0)) (-1 * df x0) < epsR_dist ((-1 * f x1 - -1 * f x0) / (x1 - x0)) (- df x0) < epsexact H2. Qed. (*********)D:R -> Propf, df:R -> Rx0:RH:D_in f df D x0eps:RH1:eps > 0x:RH0:x > 0x1:RH3:D_x D x0 x1 /\ R_dist x1 x0 < xH2:R_dist ((-1 * f x1 - -1 * f x0) / (x1 - x0)) (-1 * df x0) < epsR_dist ((-1 * f x1 - -1 * f x0) / (x1 - x0)) (-1 * df x0) < epsforall (D : R -> Prop) (df dg f g : R -> R) (x0 : R), D_in f df D x0 -> D_in g dg D x0 -> D_in (fun x : R => f x - g x) (fun x : R => df x - dg x) D x0unfold Rminus; intros; generalize (Dopp D g dg x0 H0); intro; apply (Dadd D df (fun x:R => - dg x) f (fun x:R => - g x) x0); assumption. Qed. (*********)forall (D : R -> Prop) (df dg f g : R -> R) (x0 : R), D_in f df D x0 -> D_in g dg D x0 -> D_in (fun x : R => f x - g x) (fun x : R => df x - dg x) D x0forall (n : nat) (D : R -> Prop) (x0 : R), D_in (fun x : R => x ^ n) (fun x : R => INR n * x ^ (n - 1)) D x0forall (n : nat) (D : R -> Prop) (x0 : R), D_in (fun x : R => x ^ n) (fun x : R => INR n * x ^ (n - 1)) D x0n:natD:R -> Propx0:RD_in (fun x : R => x ^ 0) (fun x : R => INR 0 * x ^ (0 - 1)) D x0n, n0:natH:forall (D0 : R -> Prop) (x1 : R), D_in (fun x : R => x ^ n0) (fun x : R => INR n0 * x ^ (n0 - 1)) D0 x1D:R -> Propx0:RD_in (fun x : R => x ^ S n0) (fun x : R => INR (S n0) * x ^ (S n0 - 1)) D x0n, n0:natH:forall (D0 : R -> Prop) (x1 : R), D_in (fun x : R => x ^ n0) (fun x : R => INR n0 * x ^ (n0 - 1)) D0 x1D:R -> Propx0:RD_in (fun x : R => x ^ S n0) (fun x : R => INR (S n0) * x ^ (S n0 - 1)) D x0n, n0:natH:forall (D0 : R -> Prop) (x1 : R), D_in (fun x : R => x ^ n0) (fun x : R => INR n0 * x ^ (n0 - 1)) D0 x1D:R -> Propx0:RD_in (fun x : R => x ^ S n0) (fun x : R => INR (S n0) * x ^ n0) D x0n, n0:natH:forall (D0 : R -> Prop) (x1 : R), D_in (fun x2 : R => x2 ^ n0) (fun x2 : R => INR n0 * x2 ^ (n0 - 1)) D0 x1D:R -> Propx0, eps:RH1:eps > 0x:RH0:x > 0H2:forall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((x1 * x1 ^ n0 - x0 * x0 ^ n0) / (x1 - x0)) (1 * x0 ^ n0 + x0 * (INR n0 * x0 ^ (n0 - 1))) < epsforall x1 : R, D_x D x0 x1 /\ R_dist x1 x0 < x -> R_dist ((x1 * x1 ^ n0 - x0 * x0 ^ n0) / (x1 - x0)) (match n0 with | 0%nat => 1 | S _ => INR n0 + 1 end * x0 ^ n0) < epsn, n0:natH:forall (D0 : R -> Prop) (x2 : R), D_in (fun x3 : R => x3 ^ n0) (fun x3 : R => INR n0 * x3 ^ (n0 - 1)) D0 x2D:R -> Propx0, eps:RH1:eps > 0x:RH0:x > 0x1:RH2:R_dist ((x1 ^ S n0 - x0 ^ S n0) / (x1 - x0)) (x0 ^ n0 + x0 ^ S (n0 - 1) * INR n0) < epscond:n0 = 0%natR_dist ((x1 * x1 ^ n0 - x0 * x0 ^ n0) / (x1 - x0)) (match n0 with | 0%nat => 1 | S _ => INR n0 + 1 end * x0 ^ n0) < epsn, n0:natH:forall (D0 : R -> Prop) (x2 : R), D_in (fun x3 : R => x3 ^ n0) (fun x3 : R => INR n0 * x3 ^ (n0 - 1)) D0 x2D:R -> Propx0, eps:RH1:eps > 0x:RH0:x > 0x1:RH2:R_dist ((x1 ^ S n0 - x0 ^ S n0) / (x1 - x0)) (x0 ^ n0 + x0 ^ S (n0 - 1) * INR n0) < epscond:n0 <> 0%natR_dist ((x1 * x1 ^ n0 - x0 * x0 ^ n0) / (x1 - x0)) (match n0 with | 0%nat => 1 | S _ => INR n0 + 1 end * x0 ^ n0) < epscut (n0 <> 0%nat -> S (n0 - 1) = n0); [ intro | omega ]; rewrite (H3 cond) in H2; rewrite (Rmult_comm (x0 ^ n0) (INR n0)) in H2; rewrite (tech_pow_Rplus x0 n0 n0) in H2; assumption. Qed. (*********)n, n0:natH:forall (D0 : R -> Prop) (x2 : R), D_in (fun x3 : R => x3 ^ n0) (fun x3 : R => INR n0 * x3 ^ (n0 - 1)) D0 x2D:R -> Propx0, eps:RH1:eps > 0x:RH0:x > 0x1:RH2:R_dist ((x1 ^ S n0 - x0 ^ S n0) / (x1 - x0)) (x0 ^ n0 + x0 ^ S (n0 - 1) * INR n0) < epscond:n0 <> 0%natR_dist ((x1 * x1 ^ n0 - x0 * x0 ^ n0) / (x1 - x0)) (match n0 with | 0%nat => 1 | S _ => INR n0 + 1 end * x0 ^ n0) < epsforall (Df Dg : R -> Prop) (df dg f g : R -> R) (x0 : R), D_in f df Df x0 -> D_in g dg Dg (f x0) -> D_in (fun x : R => g (f x)) (fun x : R => df x * dg (f x)) (Dgf Df Dg f) x0forall (Df Dg : R -> Prop) (df dg f g : R -> R) (x0 : R), D_in f df Df x0 -> D_in g dg Dg (f x0) -> D_in (fun x : R => g (f x)) (fun x : R => df x * dg (f x)) (Dgf Df Dg f) x0Df, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x : R => (g x - g (f x0)) * / (x - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H5:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0 -> limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0) * ((f x - f x0) * / (x - x0))) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0) * df x0) x0limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0 -> limit1_in (fun x : R => (g (f x) - g (f x0)) * / (x - x0)) (D_x (Dgf Df Dg f) x0) (df x0 * dg (f x0)) x0Df, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x : R => (g x - g (f x0)) * / (x - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H5:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0 -> limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0) * ((f x - f x0) * / (x - x0))) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0) * df x0) x0limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0Df, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x2 : R => (f x2 - f x0) * / (x2 - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x2 : R => (g x2 - g (f x0)) * / (x2 - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x2 : R => (g (f x2) - g (f x0)) * / (f x2 - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H6:limit1_in (fun x2 : R => (f x2 - f x0) * / (x2 - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0eps:RH8:eps > 0x, x1:RH5:x1 > 0H7:forall x2 : R, Dgf (D_x Df x0) (D_x Dg (f x0)) f x2 /\ R_dist x2 x0 < x1 -> R_dist ((g (f x2) - g (f x0)) * / (f x2 - f x0) * ((f x2 - f x0) * / (x2 - x0))) (dg (f x0) * df x0) < epsH9:x > 0H10:forall x2 : R, D_x Df x0 x2 /\ R_dist x2 x0 < x -> R_dist ((f x2 - f x0) * / (x2 - x0) * dg (f x0)) (df x0 * dg (f x0)) < epsRmin x x1 > 0Df, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x2 : R => (f x2 - f x0) * / (x2 - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x2 : R => (g x2 - g (f x0)) * / (x2 - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x2 : R => (g (f x2) - g (f x0)) * / (f x2 - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H6:limit1_in (fun x2 : R => (f x2 - f x0) * / (x2 - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0eps:RH8:eps > 0x, x1:RH5:x1 > 0H7:forall x2 : R, Dgf (D_x Df x0) (D_x Dg (f x0)) f x2 /\ R_dist x2 x0 < x1 -> R_dist ((g (f x2) - g (f x0)) * / (f x2 - f x0) * ((f x2 - f x0) * / (x2 - x0))) (dg (f x0) * df x0) < epsH9:x > 0H10:forall x2 : R, D_x Df x0 x2 /\ R_dist x2 x0 < x -> R_dist ((f x2 - f x0) * / (x2 - x0) * dg (f x0)) (df x0 * dg (f x0)) < epsforall x2 : R, D_x (Dgf Df Dg f) x0 x2 /\ R_dist x2 x0 < Rmin x x1 -> R_dist ((g (f x2) - g (f x0)) * / (x2 - x0)) (df x0 * dg (f x0)) < epsDf, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x : R => (g x - g (f x0)) * / (x - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H5:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0 -> limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0) * ((f x - f x0) * / (x - x0))) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0) * df x0) x0limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0Df, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x2 : R => (f x2 - f x0) * / (x2 - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x2 : R => (g x2 - g (f x0)) * / (x2 - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x2 : R => (g (f x2) - g (f x0)) * / (f x2 - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H6:limit1_in (fun x2 : R => (f x2 - f x0) * / (x2 - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0eps:RH8:eps > 0x, x1:RH5:x1 > 0H7:forall x2 : R, Dgf (D_x Df x0) (D_x Dg (f x0)) f x2 /\ R_dist x2 x0 < x1 -> R_dist ((g (f x2) - g (f x0)) * / (f x2 - f x0) * ((f x2 - f x0) * / (x2 - x0))) (dg (f x0) * df x0) < epsH9:x > 0H10:forall x2 : R, D_x Df x0 x2 /\ R_dist x2 x0 < x -> R_dist ((f x2 - f x0) * / (x2 - x0) * dg (f x0)) (df x0 * dg (f x0)) < epsforall x2 : R, D_x (Dgf Df Dg f) x0 x2 /\ R_dist x2 x0 < Rmin x x1 -> R_dist ((g (f x2) - g (f x0)) * / (x2 - x0)) (df x0 * dg (f x0)) < epsDf, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x : R => (g x - g (f x0)) * / (x - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H5:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0 -> limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0) * ((f x - f x0) * / (x - x0))) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0) * df x0) x0limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0Df, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x3 : R => (f x3 - f x0) * / (x3 - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x3 : R => (g x3 - g (f x0)) * / (x3 - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x3 : R => (g (f x3) - g (f x0)) * / (f x3 - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H6:limit1_in (fun x3 : R => (f x3 - f x0) * / (x3 - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0eps:RH8:eps > 0x, x1:RH7:forall x3 : R, ((Df x3 /\ x0 <> x3) /\ Dg (f x3) /\ f x0 <> f x3) /\ R_dist x3 x0 < x1 -> R_dist ((g (f x3) - g (f x0)) * / (f x3 - f x0) * ((f x3 - f x0) * / (x3 - x0))) (dg (f x0) * df x0) < epsH9:x > 0H10:forall x3 : R, (Df x3 /\ x0 <> x3) /\ R_dist x3 x0 < x -> R_dist ((f x3 - f x0) * / (x3 - x0) * dg (f x0)) (df x0 * dg (f x0)) < epsx2:RH11:(Df x2 /\ Dg (f x2)) /\ x0 <> x2H5:R_dist x2 x0 < xH13:R_dist x2 x0 < x1H12:f x2 = f x0R_dist ((g (f x2) - g (f x0)) * / (x2 - x0)) (df x0 * dg (f x0)) < epsDf, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x3 : R => (f x3 - f x0) * / (x3 - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x3 : R => (g x3 - g (f x0)) * / (x3 - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x3 : R => (g (f x3) - g (f x0)) * / (f x3 - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H6:limit1_in (fun x3 : R => (f x3 - f x0) * / (x3 - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0eps:RH8:eps > 0x, x1:RH7:forall x3 : R, ((Df x3 /\ x0 <> x3) /\ Dg (f x3) /\ f x0 <> f x3) /\ R_dist x3 x0 < x1 -> R_dist ((g (f x3) - g (f x0)) * / (f x3 - f x0) * ((f x3 - f x0) * / (x3 - x0))) (dg (f x0) * df x0) < epsH9:x > 0H10:forall x3 : R, (Df x3 /\ x0 <> x3) /\ R_dist x3 x0 < x -> R_dist ((f x3 - f x0) * / (x3 - x0) * dg (f x0)) (df x0 * dg (f x0)) < epsx2:RH11:(Df x2 /\ Dg (f x2)) /\ x0 <> x2H5:R_dist x2 x0 < xH13:R_dist x2 x0 < x1H12:f x2 <> f x0R_dist ((g (f x2) - g (f x0)) * / (x2 - x0)) (df x0 * dg (f x0)) < epsDf, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x : R => (g x - g (f x0)) * / (x - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H5:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0 -> limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0) * ((f x - f x0) * / (x - x0))) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0) * df x0) x0limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0Df, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x3 : R => (f x3 - f x0) * / (x3 - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x3 : R => (g x3 - g (f x0)) * / (x3 - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x3 : R => (g (f x3) - g (f x0)) * / (f x3 - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H6:limit1_in (fun x3 : R => (f x3 - f x0) * / (x3 - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0eps:RH8:eps > 0x, x1:RH7:forall x3 : R, ((Df x3 /\ x0 <> x3) /\ Dg (f x3) /\ f x0 <> f x3) /\ R_dist x3 x0 < x1 -> R_dist ((g (f x3) - g (f x0)) * / (f x3 - f x0) * ((f x3 - f x0) * / (x3 - x0))) (dg (f x0) * df x0) < epsH9:x > 0H10:forall x3 : R, (Df x3 /\ x0 <> x3) /\ R_dist x3 x0 < x -> R_dist ((f x3 - f x0) * / (x3 - x0) * dg (f x0)) (df x0 * dg (f x0)) < epsx2:RH11:(Df x2 /\ Dg (f x2)) /\ x0 <> x2H5:R_dist x2 x0 < xH13:R_dist x2 x0 < x1H12:f x2 <> f x0R_dist ((g (f x2) - g (f x0)) * / (x2 - x0)) (df x0 * dg (f x0)) < epsDf, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x : R => (g x - g (f x0)) * / (x - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H5:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0 -> limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0) * ((f x - f x0) * / (x - x0))) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0) * df x0) x0limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0clear H5 H3 H4 H2; unfold limit1_in; unfold limit_in; simpl; unfold limit1_in in H1; unfold limit_in in H1; simpl in H1; intros; elim (H1 eps H2); clear H1; intros; elim H1; clear H1; intros; split with x; split; auto; intros; unfold D_x, Dgf in H4, H3; elim H4; clear H4; intros; elim H4; clear H4; intros; exact (H3 x1 (conj H4 H5)). Qed. (*********)Df, Dg:R -> Propdf, dg, f, g:R -> Rx0:RH:D_in f df Df x0H0:D_in g dg Dg (f x0)H1:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (D_x Df x0) (df x0) x0H2:limit1_in (fun x : R => (g x - g (f x0)) * / (x - f x0)) (D_x Dg (f x0)) (dg (f x0)) (f x0)H4:limit1_in f (D_x Df x0) (f x0) x0H3:limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0)) x0H5:limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0 -> limit1_in (fun x : R => (g (f x) - g (f x0)) * / (f x - f x0) * ((f x - f x0) * / (x - x0))) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (dg (f x0) * df x0) x0limit1_in (fun x : R => (f x - f x0) * / (x - x0)) (Dgf (D_x Df x0) (D_x Dg (f x0)) f) (df x0) x0forall (n : nat) (D : R -> Prop) (x0 : R) (expr dexpr : R -> R), D_in expr dexpr D x0 -> D_in (fun x : R => expr x ^ n) (fun x : R => INR n * expr x ^ (n - 1) * dexpr x) (Dgf D D expr) x0forall (n : nat) (D : R -> Prop) (x0 : R) (expr dexpr : R -> R), D_in expr dexpr D x0 -> D_in (fun x : R => expr x ^ n) (fun x : R => INR n * expr x ^ (n - 1) * dexpr x) (Dgf D D expr) x0cut (dexpr x0 * (INR n * expr x0 ^ (n - 1)) = INR n * expr x0 ^ (n - 1) * dexpr x0); [ intro Rew; rewrite <- Rew; exact (H2 x1 H3) | ring ]. Qed.n:natD:R -> Propx0:Rexpr, dexpr:R -> RH:D_in expr dexpr D x0eps:RH1:eps > 0x:RH0:x > 0H2:forall x2 : R, D_x (Dgf D D expr) x0 x2 /\ R_dist x2 x0 < x -> R_dist ((expr x2 ^ n - expr x0 ^ n) / (x2 - x0)) (dexpr x0 * (INR n * expr x0 ^ (n - 1))) < epsx1:RH3:D_x (Dgf D D expr) x0 x1 /\ R_dist x1 x0 < xR_dist ((expr x1 ^ n - expr x0 ^ n) / (x1 - x0)) (INR n * expr x0 ^ (n - 1) * dexpr x0) < eps