Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rfunctions.
Require Import SeqSeries.
Require Import Ranalysis_reg.
Require Import Rbase.
Require Import RiemannInt_SF.
Require Import Max.
Local Open Scope R_scope.

Set Implicit Arguments.

(********************************************)
Riemann's Integral
(********************************************)

Definition Riemann_integrable (f:R -> R) (a b:R) : Type :=
  forall eps:posreal,
    { phi:StepFun a b &
      { psi:StepFun a b |
        (forall t:R,
          Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\
        Rabs (RiemannInt_SF psi) < eps } }.

Definition phi_sequence (un:nat -> posreal) (f:R -> R)
  (a b:R) (pr:Riemann_integrable f a b) (n:nat) :=
  projT1 (pr (un n)).


forall (un : nat -> posreal) (f : R -> R) (a b : R) (pr : Riemann_integrable f a b) (N : nat), {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr N t) <= psi t) /\ Rabs (RiemannInt_SF psi) < un N}

forall (un : nat -> posreal) (f : R -> R) (a b : R) (pr : Riemann_integrable f a b) (N : nat), {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr N t) <= psi t) /\ Rabs (RiemannInt_SF psi) < un N}
intros; apply (projT2 (pr (un N))). Qed.

forall (f : R -> R) (a b : R), Riemann_integrable f a b -> Riemann_integrable f b a

forall (f : R -> R) (a b : R), Riemann_integrable f a b -> Riemann_integrable f b a
f:R -> R
a, b:R
eps:posreal
x:StepFun a b
p:{psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}

{phi : StepFun b a & {psi : StepFun b a | (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps

forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - {| fe := x; pre := StepFun_P6 (pre x) |} t) <= {| fe := x0; pre := StepFun_P6 (pre x0) |} t
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
Rabs (RiemannInt_SF {| fe := x0; pre := StepFun_P6 (pre x0) |}) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps

Rabs (RiemannInt_SF {| fe := x0; pre := StepFun_P6 (pre x0) |}) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
r:b <= a
r0:a <= b
H1:Rabs (Int_SF (subdivision_val x0) (subdivision x0)) < eps

Rabs (Int_SF (subdivision_val x0) (subdivision x0)) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
n:~ b <= a
r:a <= b
H1:Rabs (Int_SF (subdivision_val x0) (subdivision x0)) < eps
Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
r:b <= a
n:~ a <= b
H1:Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
Rabs (Int_SF (subdivision_val x0) (subdivision x0)) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
n:~ b <= a
n0:~ a <= b
H1:Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
n:~ b <= a
r:a <= b
H1:Rabs (Int_SF (subdivision_val x0) (subdivision x0)) < eps

Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
r:b <= a
n:~ a <= b
H1:Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
Rabs (Int_SF (subdivision_val x0) (subdivision x0)) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
n:~ b <= a
n0:~ a <= b
H1:Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
r:b <= a
n:~ a <= b
H1:Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps

Rabs (Int_SF (subdivision_val x0) (subdivision x0)) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
n:~ b <= a
n0:~ a <= b
H1:Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
f:R -> R
a, b:R
eps:posreal
x, x0:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x0 t
H0:Rabs (RiemannInt_SF x0) < eps
n:~ b <= a
n0:~ a <= b
H1:Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps

Rabs (- Int_SF (subdivision_val x0) (subdivision x0)) < eps
apply H1. Qed.

forall (f : R -> R) (a b : R) (un : nat -> posreal) (vn wn : nat -> StepFun a b), Un_cv (fun x : nat => un x) 0 -> a <= b -> (forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n) -> {l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}

forall (f : R -> R) (a b : R) (un : nat -> posreal) (vn wn : nat -> StepFun a b), Un_cv (fun x : nat => un x) 0 -> a <= b -> (forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n) -> {l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:a <= b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
eps:R
H2:eps > 0

0 < eps / 2
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:a <= b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
eps:R
H2:eps > 0
H3:0 < eps / 2
exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (RiemannInt_SF (vn n)) (RiemannInt_SF (vn m)) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:a <= b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
eps:R
H2:eps > 0
H3:0 < eps / 2

exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (RiemannInt_SF (vn n)) (RiemannInt_SF (vn m)) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

Rabs (RiemannInt_SF {| fe := fun x : R => vn n x + -1 * vn m x; pre := StepFun_P28 (-1) (vn n) (vn m) |}) <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => vn n x0 + -1 * vn m x0; pre := StepFun_P28 (-1) (vn n) (vn m) |} x); pre := StepFun_P32 {| fe := fun x : R => vn n x + -1 * vn m x; pre := StepFun_P28 (-1) (vn n) (vn m) |} |}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => vn n x0 + -1 * vn m x0; pre := StepFun_P28 (-1) (vn n) (vn m) |} x); pre := StepFun_P32 {| fe := fun x : R => vn n x + -1 * vn m x; pre := StepFun_P28 (-1) (vn n) (vn m) |} |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => vn n x0 + -1 * vn m x0; pre := StepFun_P28 (-1) (vn n) (vn m) |} x); pre := StepFun_P32 {| fe := fun x : R => vn n x + -1 * vn m x; pre := StepFun_P28 (-1) (vn n) (vn m) |} |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => vn n x0 + -1 * vn m x0; pre := StepFun_P28 (-1) (vn n) (vn m) |} x); pre := StepFun_P32 {| fe := fun x : R => vn n x + -1 * vn m x; pre := StepFun_P28 (-1) (vn n) (vn m) |} |} <= RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

forall x : R, a < x < b -> {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => vn n x1 + -1 * vn m x1; pre := StepFun_P28 (-1) (vn n) (vn m) |} x0); pre := StepFun_P32 {| fe := fun x0 : R => vn n x0 + -1 * vn m x0; pre := StepFun_P28 (-1) (vn n) (vn m) |} |} x <= {| fe := fun x0 : R => wn n x0 + 1 * wn m x0; pre := StepFun_P28 1 (wn n) (wn m) |} x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:a < x < b

Rabs (vn n x + -1 * vn m x) <= Rabs (vn n x - f x) + Rabs (f x - vn m x)
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:a < x < b
Rabs (vn n x - f x) + Rabs (f x - vn m x) <= wn n x + 1 * wn m x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:a < x < b

Rabs (vn n x - f x) + Rabs (f x - vn m x) <= wn n x + 1 * wn m x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:a < x < b

Rmin a b = a
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:a < x < b
H12:Rmin a b = a
Rabs (vn n x - f x) + Rabs (f x - vn m x) <= wn n x + 1 * wn m x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:a < x < b
H12:Rmin a b = a

Rabs (vn n x - f x) + Rabs (f x - vn m x) <= wn n x + 1 * wn m x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:a < x < b
H12:Rmin a b = a

Rmax a b = b
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:a < x < b
H12:Rmin a b = a
H13:Rmax a b = b
Rabs (vn n x - f x) + Rabs (f x - vn m x) <= wn n x + 1 * wn m x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:a < x < b
H12:Rmin a b = a
H13:Rmax a b = b

Rabs (vn n x - f x) + Rabs (f x - vn m x) <= wn n x + 1 * wn m x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:Rmin a b < x < Rmax a b
H12:Rmin a b = a
H13:Rmax a b = b

Rabs (vn n x - f x) <= wn n x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:Rmin a b < x < Rmax a b
H12:Rmin a b = a
H13:Rmax a b = b
Rabs (f x - vn m x) <= wn m x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:Rmin a b < x < Rmax a b
H12:Rmin a b = a
H13:Rmax a b = b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:Rmin a b < x < Rmax a b
H12:Rmin a b = a
H13:Rmax a b = b
Rabs (f x - vn m x) <= wn m x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:Rmin a b < x < Rmax a b
H12:Rmin a b = a
H13:Rmax a b = b

Rabs (f x - vn m x) <= wn m x
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
x:R
H11:Rmin a b < x < Rmax a b
H12:Rmin a b = a
H13:Rmax a b = b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

RiemannInt_SF {| fe := fun x : R => wn n x + 1 * wn m x; pre := StepFun_P28 1 (wn n) (wn m) |} < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

RiemannInt_SF (wn n) + RiemannInt_SF (wn m) < un n + un m
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
un n + un m < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

RiemannInt_SF (wn n) + RiemannInt_SF (wn m) <= Rabs (RiemannInt_SF (wn n)) + Rabs (RiemannInt_SF (wn m))
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
Rabs (RiemannInt_SF (wn n)) + Rabs (RiemannInt_SF (wn m)) < un n + un m
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
un n + un m < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

Rabs (RiemannInt_SF (wn n)) + Rabs (RiemannInt_SF (wn m)) < un n + un m
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
un n + un m < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

un n + un m < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

un n + un m <= Rabs (un n) + Rabs (un m)
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n
Rabs (un n) + Rabs (un m) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (un n0) 0 < eps0
H0:a <= b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
eps:R
H2:eps > 0
H3:0 < eps / 2
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 2
n, m:nat
H5:(n >= N0)%nat
H6:(m >= N0)%nat
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn m t) <= wn m t
H8:Rabs (RiemannInt_SF (wn m)) < un m
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H10:Rabs (RiemannInt_SF (wn n)) < un n

Rabs (un n) + Rabs (un m) < eps
replace (pos (un n)) with (un n - 0); [ idtac | ring ]; replace (pos (un m)) with (un m - 0); [ idtac | ring ]; rewrite (double_var eps); apply Rplus_lt_compat; apply H4; assumption. Qed.

forall (f : R -> R) (a b : R) (un : nat -> posreal) (vn wn : nat -> StepFun a b), Un_cv (fun x : nat => un x) 0 -> (forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n) -> {l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}

forall (f : R -> R) (a b : R) (un : nat -> posreal) (vn wn : nat -> StepFun a b), Un_cv (fun x : nat => un x) 0 -> (forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n) -> {l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hle:a <= b

{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b

{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a

{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a
vn':=fun n : nat => {| fe := vn n; pre := StepFun_P6 (pre (vn n)) |}:nat -> StepFun b a
wn':=fun n : nat => {| fe := wn n; pre := StepFun_P6 (pre (wn n)) |}:nat -> StepFun b a

forall n : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\ Rabs (RiemannInt_SF (wn' n)) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a
vn':=fun n : nat => {| fe := vn n; pre := StepFun_P6 (pre (vn n)) |}:nat -> StepFun b a
wn':=fun n : nat => {| fe := wn n; pre := StepFun_P6 (pre (wn n)) |}:nat -> StepFun b a
H2:forall n : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\ Rabs (RiemannInt_SF (wn' n)) < un n
{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n

forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Rabs (RiemannInt_SF (wn' n)) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a
vn':=fun n : nat => {| fe := vn n; pre := StepFun_P6 (pre (vn n)) |}:nat -> StepFun b a
wn':=fun n : nat => {| fe := wn n; pre := StepFun_P6 (pre (wn n)) |}:nat -> StepFun b a
H2:forall n : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\ Rabs (RiemannInt_SF (wn' n)) < un n
{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n

Rabs (RiemannInt_SF (wn' n)) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a
vn':=fun n : nat => {| fe := vn n; pre := StepFun_P6 (pre (vn n)) |}:nat -> StepFun b a
wn':=fun n : nat => {| fe := wn n; pre := StepFun_P6 (pre (wn n)) |}:nat -> StepFun b a
H2:forall n : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\ Rabs (RiemannInt_SF (wn' n)) < un n
{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hleab:a <= b
Hle':b <= a
H4:Rabs (Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n

Rabs (Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hleab:a <= b
Hnle':~ b <= a
H4:Rabs (Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hnleab:~ a <= b
Hle':b <= a
H4:Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
Rabs (Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hnleab:~ a <= b
Hnle':~ b <= a
H4:Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a
vn':=fun n : nat => {| fe := vn n; pre := StepFun_P6 (pre (vn n)) |}:nat -> StepFun b a
wn':=fun n : nat => {| fe := wn n; pre := StepFun_P6 (pre (wn n)) |}:nat -> StepFun b a
H2:forall n : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\ Rabs (RiemannInt_SF (wn' n)) < un n
{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hleab:a <= b
Hnle':~ b <= a
H4:Rabs (Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n

Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hnleab:~ a <= b
Hle':b <= a
H4:Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
Rabs (Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hnleab:~ a <= b
Hnle':~ b <= a
H4:Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a
vn':=fun n : nat => {| fe := vn n; pre := StepFun_P6 (pre (vn n)) |}:nat -> StepFun b a
wn':=fun n : nat => {| fe := wn n; pre := StepFun_P6 (pre (wn n)) |}:nat -> StepFun b a
H2:forall n : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\ Rabs (RiemannInt_SF (wn' n)) < un n
{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hnleab:~ a <= b
Hle':b <= a
H4:Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n

Rabs (Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hnleab:~ a <= b
Hnle':~ b <= a
H4:Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a
vn':=fun n : nat => {| fe := vn n; pre := StepFun_P6 (pre (vn n)) |}:nat -> StepFun b a
wn':=fun n : nat => {| fe := wn n; pre := StepFun_P6 (pre (wn n)) |}:nat -> StepFun b a
H2:forall n : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\ Rabs (RiemannInt_SF (wn' n)) < un n
{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
n:nat
H2:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t
H3:Rabs (RiemannInt_SF (wn n)) < un n
Hnleab:~ a <= b
Hnle':~ b <= a
H4:Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n

Rabs (- Int_SF (subdivision_val (wn n)) (subdivision (wn n))) < un n
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a
vn':=fun n : nat => {| fe := vn n; pre := StepFun_P6 (pre (vn n)) |}:nat -> StepFun b a
wn':=fun n : nat => {| fe := wn n; pre := StepFun_P6 (pre (wn n)) |}:nat -> StepFun b a
H2:forall n : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\ Rabs (RiemannInt_SF (wn' n)) < un n
{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x : nat => un x) 0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n t) <= wn n t) /\ Rabs (RiemannInt_SF (wn n)) < un n
Hnle:~ a <= b
H1:b <= a
vn':=fun n : nat => {| fe := vn n; pre := StepFun_P6 (pre (vn n)) |}:nat -> StepFun b a
wn':=fun n : nat => {| fe := wn n; pre := StepFun_P6 (pre (wn n)) |}:nat -> StepFun b a
H2:forall n : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n t) <= wn' n t) /\ Rabs (RiemannInt_SF (wn' n)) < un n

{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn N)) l}
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hle':b <= a
Hle'':a <= b
H7:Rabs (Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps

Rabs (Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hle':b <= a
Hnle'':~ a <= b
H7:Rabs (Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps
Rabs (- Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hnle':~ b <= a
Hle'':a <= b
H7:Rabs (- Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps
Rabs (Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hnle':~ b <= a
Hnle'':~ a <= b
H7:Rabs (- Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps
Rabs (- Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hle':b <= a
Hnle'':~ a <= b
H7:Rabs (Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps

Rabs (- Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hnle':~ b <= a
Hle'':a <= b
H7:Rabs (- Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps
Rabs (Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hnle':~ b <= a
Hnle'':~ a <= b
H7:Rabs (- Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps
Rabs (- Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hnle':~ b <= a
Hle'':a <= b
H7:Rabs (- Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps

Rabs (Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hnle':~ b <= a
Hnle'':~ a <= b
H7:Rabs (- Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps
Rabs (- Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
f:R -> R
a, b:R
un:nat -> posreal
vn, wn:nat -> StepFun a b
H:Un_cv (fun x1 : nat => un x1) 0
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - vn n0 t) <= wn n0 t) /\ Rabs (RiemannInt_SF (wn n0)) < un n0
Hnle:~ a <= b
H1:b <= a
vn':=fun n0 : nat => {| fe := vn n0; pre := StepFun_P6 (pre (vn n0)) |}:nat -> StepFun b a
wn':=fun n0 : nat => {| fe := wn n0; pre := StepFun_P6 (pre (wn n0)) |}:nat -> StepFun b a
H2:forall n0 : nat, (forall t : R, Rmin b a <= t <= Rmax b a -> Rabs (f t - vn' n0 t) <= wn' n0 t) /\ Rabs (RiemannInt_SF (wn' n0)) < un n0
H3:{l : R | Un_cv (fun N : nat => RiemannInt_SF (vn' N)) l}
x:R
p:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (RiemannInt_SF (vn' n0)) x < eps
n:nat
H6:(n >= x0)%nat
Hnle':~ b <= a
Hnle'':~ a <= b
H7:Rabs (- Int_SF (subdivision_val (vn' n)) (subdivision (vn' n)) - x) < eps

Rabs (- Int_SF (subdivision_val (vn n)) (subdivision (vn n)) - - x) < eps
elim Hnle'; assumption. Qed.

forall (f : R -> R) (a b : R) (pr : Riemann_integrable f a b) (un : nat -> posreal), Un_cv (fun x : nat => un x) 0 -> {l : R | Un_cv (fun N : nat => RiemannInt_SF (phi_sequence un pr N)) l}

forall (f : R -> R) (a b : R) (pr : Riemann_integrable f a b) (un : nat -> posreal), Un_cv (fun x : nat => un x) 0 -> {l : R | Un_cv (fun N : nat => RiemannInt_SF (phi_sequence un pr N)) l}
intros f; intros; apply RiemannInt_P3 with f un (fun n:nat => proj1_sig (phi_sequence_prop un pr n)); [ apply H | intro; apply (proj2_sig (phi_sequence_prop un pr n)) ]. Qed.

forall (f : R -> R) (a b l : R) (pr1 pr2 : Riemann_integrable f a b) (un vn : nat -> posreal), Un_cv (fun x : nat => un x) 0 -> Un_cv (fun x : nat => vn x) 0 -> Un_cv (fun N : nat => RiemannInt_SF (phi_sequence un pr1 N)) l -> Un_cv (fun N : nat => RiemannInt_SF (phi_sequence vn pr2 N)) l

forall (f : R -> R) (a b l : R) (pr1 pr2 : Riemann_integrable f a b) (un vn : nat -> posreal), Un_cv (fun x : nat => un x) 0 -> Un_cv (fun x : nat => vn x) 0 -> Un_cv (fun N : nat => RiemannInt_SF (phi_sequence un pr1 N)) l -> Un_cv (fun N : nat => RiemannInt_SF (phi_sequence vn pr2 N)) l
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (un n - 0) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (vn n - 0) < eps0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps0
eps:R
H2:eps > 0

0 < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (un n - 0) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (vn n - 0) < eps0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps0
eps:R
H2:eps > 0
H3:0 < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (RiemannInt_SF (phi_sequence vn pr2 n) - l) < eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (un n - 0) < eps0
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (vn n - 0) < eps0
H1:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps0
eps:R
H2:eps > 0
H3:0 < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (RiemannInt_SF (phi_sequence vn pr2 n) - l) < eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence vn pr2 n) - l) <= Rabs (RiemannInt_SF (phi_sequence vn pr2 n) - RiemannInt_SF (phi_sequence un pr1 n)) + Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence vn pr2 n) - RiemannInt_SF (phi_sequence un pr1 n)) + Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence vn pr2 n) - RiemannInt_SF (phi_sequence un pr1 n)) + Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence vn pr2 n) - RiemannInt_SF (phi_sequence un pr1 n)) + Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < 2 * (eps / 3) + eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence vn pr2 n) - RiemannInt_SF (phi_sequence un pr1 n)) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n

Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |} x); pre := StepFun_P32 {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |} |}
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |} x); pre := StepFun_P32 {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |} |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |} x); pre := StepFun_P32 {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |} |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |} x); pre := StepFun_P32 {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |} |} <= RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |}
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b

Rabs (phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x) <= Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_un x + psi_vn x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b

Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_un x + psi_vn x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b

Rmin a b = a
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a
Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_un x + psi_vn x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a

Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_un x + psi_vn x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a

Rmax a b = b
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a
H11:Rmax a b = b
Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_un x + psi_vn x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a
H11:Rmax a b = b

Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_un x + psi_vn x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a
H11:Rmax a b = b

Rabs (phi_sequence vn pr2 n x - f x) <= psi_vn x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a
H11:Rmax a b = b
Rabs (f x - phi_sequence un pr1 n x) <= psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t
H9:Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a
H11:Rmax a b = b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a
H11:Rmax a b = b
Rabs (f x - phi_sequence un pr1 n x) <= psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a
H11:Rmax a b = b

Rabs (f x - phi_sequence un pr1 n x) <= psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
x:R
H7:a < x < b
H10:Rmin a b = a
H11:Rmax a b = b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t
H9:Rabs (RiemannInt_SF psi_un) < un n

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

RiemannInt_SF {| fe := fun x : R => psi_un x + 1 * psi_vn x; pre := StepFun_P28 1 psi_un psi_vn |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

RiemannInt_SF psi_un < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF psi_vn < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

RiemannInt_SF psi_un < un n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
un n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF psi_vn < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t
H8:Rabs (RiemannInt_SF psi_un) < un n

RiemannInt_SF psi_un <= Rabs (RiemannInt_SF psi_un)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t
H8:Rabs (RiemannInt_SF psi_un) < un n
Rabs (RiemannInt_SF psi_un) < un n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
un n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF psi_vn < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t
H8:Rabs (RiemannInt_SF psi_un) < un n

Rabs (RiemannInt_SF psi_un) < un n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
un n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF psi_vn < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

un n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
RiemannInt_SF psi_vn < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

RiemannInt_SF psi_vn < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

RiemannInt_SF psi_vn < vn n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
vn n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t
H8:Rabs (RiemannInt_SF psi_vn) < vn n

RiemannInt_SF psi_vn <= Rabs (RiemannInt_SF psi_vn)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t
H8:Rabs (RiemannInt_SF psi_vn) < vn n
Rabs (RiemannInt_SF psi_vn) < vn n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
vn n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t
H8:Rabs (RiemannInt_SF psi_vn) < vn n

Rabs (RiemannInt_SF psi_vn) < vn n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b
vn n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hle:a <= b

vn n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

Rabs (RiemannInt_SF {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

Rabs (RiemannInt_SF {| fe := {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |}) <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} x); pre := StepFun_P32 {| fe := {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} |}
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} x); pre := StepFun_P32 {| fe := {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} x); pre := StepFun_P32 {| fe := {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} x); pre := StepFun_P32 {| fe := {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} |} <= RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |}
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

b <= a
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
forall x : R, b < x < a -> {| fe := fun x0 : R => Rabs ({| fe := {| fe := fun x1 : R => phi_sequence vn pr2 n x1 + -1 * phi_sequence un pr1 n x1; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x1 : R => phi_sequence vn pr2 n x1 + -1 * phi_sequence un pr1 n x1; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} x0); pre := StepFun_P32 {| fe := {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} |} x <= {| fe := {| fe := fun x0 : R => psi_vn x0 + 1 * psi_un x0; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => psi_vn x0 + 1 * psi_un x0; pre := StepFun_P28 1 psi_vn psi_un |}) |} x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

forall x : R, b < x < a -> {| fe := fun x0 : R => Rabs ({| fe := {| fe := fun x1 : R => phi_sequence vn pr2 n x1 + -1 * phi_sequence un pr1 n x1; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x1 : R => phi_sequence vn pr2 n x1 + -1 * phi_sequence un pr1 n x1; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} x0); pre := StepFun_P32 {| fe := {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi_sequence vn pr2 n x0 + -1 * phi_sequence un pr1 n x0; pre := StepFun_P28 (-1) (phi_sequence vn pr2 n) (phi_sequence un pr1 n) |}) |} |} x <= {| fe := {| fe := fun x0 : R => psi_vn x0 + 1 * psi_un x0; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => psi_vn x0 + 1 * psi_un x0; pre := StepFun_P28 1 psi_vn psi_un |}) |} x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a

Rabs (phi_sequence vn pr2 n x + -1 * phi_sequence un pr1 n x) <= Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_vn x + psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a

Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_vn x + psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a

Rmin a b = b
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b
Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_vn x + psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b

Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_vn x + psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b

Rmax a b = a
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b
H11:Rmax a b = a
Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_vn x + psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b
H11:Rmax a b = a

Rabs (phi_sequence vn pr2 n x - f x) + Rabs (f x - phi_sequence un pr1 n x) <= psi_vn x + psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b
H11:Rmax a b = a

Rabs (phi_sequence vn pr2 n x - f x) <= psi_vn x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b
H11:Rmax a b = a
Rabs (f x - phi_sequence un pr1 n x) <= psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b
H11:Rmax a b = a
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t
H9:Rabs (RiemannInt_SF psi_vn) < vn n

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b
H11:Rmax a b = a
Rabs (f x - phi_sequence un pr1 n x) <= psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b
H11:Rmax a b = a

Rabs (f x - phi_sequence un pr1 n x) <= psi_un x
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
x:R
H7:b < x < a
H10:Rmin a b = b
H11:Rmax a b = a
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t
H9:Rabs (RiemannInt_SF psi_un) < un n

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

RiemannInt_SF {| fe := {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi_vn x + 1 * psi_un x; pre := StepFun_P28 1 psi_vn psi_un |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

- RiemannInt_SF psi_vn < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
- RiemannInt_SF psi_un < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

- RiemannInt_SF psi_vn < vn n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
vn n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
- RiemannInt_SF psi_un < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t
H8:Rabs (RiemannInt_SF psi_vn) < vn n

- RiemannInt_SF psi_vn <= Rabs (RiemannInt_SF psi_vn)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t
H8:Rabs (RiemannInt_SF psi_vn) < vn n
Rabs (RiemannInt_SF psi_vn) < vn n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
vn n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
- RiemannInt_SF psi_un < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t
H8:Rabs (RiemannInt_SF psi_vn) < vn n

Rabs (RiemannInt_SF psi_vn) < vn n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
vn n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
- RiemannInt_SF psi_un < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

vn n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
- RiemannInt_SF psi_un < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

- RiemannInt_SF psi_un < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

- RiemannInt_SF psi_un < un n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
un n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t
H8:Rabs (RiemannInt_SF psi_un) < un n

- RiemannInt_SF psi_un <= Rabs (RiemannInt_SF psi_un)
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t
H8:Rabs (RiemannInt_SF psi_un) < un n
Rabs (RiemannInt_SF psi_un) < un n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
un n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t
H8:Rabs (RiemannInt_SF psi_un) < un n

Rabs (RiemannInt_SF psi_un) < un n
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b
un n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
psi_vn:StepFun a b
H5:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence vn pr2 n t) <= psi_vn t) /\ Rabs (RiemannInt_SF psi_vn) < vn n
psi_un:StepFun a b
H6:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence un pr1 n t) <= psi_un t) /\ Rabs (RiemannInt_SF psi_un) < un n
Hnle:~ a <= b

un n < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence un pr1 n) - l) < eps / 3
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
pr1, pr2:Riemann_integrable f a b
un, vn:nat -> posreal
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> Rabs (un n0 - 0) < eps / 3
N1:nat
H0:forall n0 : nat, (n0 >= N1)%nat -> Rabs (vn n0 - 0) < eps / 3
N2:nat
H1:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence un pr1 n0) - l) < eps / 3
N:=Nat.max (Nat.max N0 N1) N2:nat
n:nat
H4:(n >= N)%nat

2 * (eps / 3) + eps / 3 = eps
apply Rmult_eq_reg_l with 3; [ unfold Rdiv; rewrite Rmult_plus_distr_l; do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. Qed.

forall n : nat, 0 < / (INR n + 1)

forall n : nat, 0 < / (INR n + 1)
intro; apply Rinv_0_lt_compat; apply Rplus_le_lt_0_compat; [ apply pos_INR | apply Rlt_0_1 ]. Qed. Definition RinvN (N:nat) : posreal := mkposreal _ (RinvN_pos N).

Un_cv (fun N : nat => RinvN N) 0

Un_cv (fun N : nat => RinvN N) 0
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1

(0 <= up (/ eps))%Z
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RinvN n) 0 < eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RinvN n) 0 < eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat

0 < INR n + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
Rabs (/ (INR n + 1)) < eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

Rabs (/ (INR n + 1)) < eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

/ (INR n + 1) <= / (INR x + 1)
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
/ (INR x + 1) < eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

0 < INR x + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
INR x + 1 <= INR n + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
/ (INR x + 1) < eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

INR x + 1 <= INR n + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
/ (INR x + 1) < eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

/ (INR x + 1) < eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

/ (INR x + 1) < / / eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
eps <> 0
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

0 < / eps * (INR x + 1)
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
/ eps < INR x + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
eps <> 0
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

0 < / eps
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
0 < INR x + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
/ eps < INR x + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
eps <> 0
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

0 < INR x + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
/ eps < INR x + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
eps <> 0
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

/ eps < INR x + 1
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1
eps <> 0
eps:R
H:eps > 0
H0:IZR (up (/ eps)) > / eps
H1:IZR (up (/ eps)) - / eps <= 1
H2:(0 <= up (/ eps))%Z
x:nat
H3:up (/ eps) = Z.of_nat x
n:nat
H4:(n >= x)%nat
H5:0 < INR n + 1

eps <> 0
red; intro; rewrite H6 in H; elim (Rlt_irrefl _ H). Qed.

forall (f g : R -> R) (a b : R), (forall x : R, Rmin a b <= x <= Rmax a b -> f x = g x) -> Riemann_integrable f a b -> Riemann_integrable g a b
f, g:R -> R
a, b:R
fg:forall x : R, Rmin a b <= x <= Rmax a b -> f x = g x
rif:Riemann_integrable f a b
eps:posreal
phi, psi:StepFun a b
P1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
P2:Rabs (RiemannInt_SF psi) < eps

{phi0 : StepFun a b & {psi0 : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f, g:R -> R
a, b:R
fg:forall x : R, Rmin a b <= x <= Rmax a b -> f x = g x
rif:Riemann_integrable f a b
eps:posreal
phi, psi:StepFun a b
P1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
P2:Rabs (RiemannInt_SF psi) < eps

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t
f, g:R -> R
a, b:R
fg:forall x : R, Rmin a b <= x <= Rmax a b -> f x = g x
rif:Riemann_integrable f a b
eps:posreal
phi, psi:StepFun a b
P1:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
P2:Rabs (RiemannInt_SF psi) < eps
t:R
intt:Rmin a b <= t <= Rmax a b

Rabs (f t - phi t) <= psi t
apply P1; assumption. Qed. (**********) Definition RiemannInt (f:R -> R) (a b:R) (pr:Riemann_integrable f a b) : R := let (a,_) := RiemannInt_exists pr RinvN RinvN_cv in a.

forall (f : R -> R) (a b : R) (pr1 pr2 : Riemann_integrable f a b), RiemannInt pr1 = RiemannInt pr2

forall (f : R -> R) (a b : R) (pr1 pr2 : Riemann_integrable f a b), RiemannInt pr1 = RiemannInt pr2
intros; unfold RiemannInt; case (RiemannInt_exists pr1 RinvN RinvN_cv) as (x,HUn); case (RiemannInt_exists pr2 RinvN RinvN_cv) as (x0,HUn0); eapply UL_sequence; [ apply HUn | apply RiemannInt_P4 with pr2 RinvN; apply RinvN_cv || assumption ]. Qed. (***************************************)
C°(a,b) is included in L1(a,b)
(***************************************)


forall (a b : R) (del : posreal), a < b -> {n : nat | a + INR n * del < b <= a + INR (S n) * del}

forall (a b : R) (del : posreal), a < b -> {n : nat | a + INR n * del < b <= a + INR (S n) * del}
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop

exists n : nat, I n
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
{n : nat | a + INR n * del < b <= a + INR (S n) * del}
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n

{n : nat | a + INR n * del < b <= a + INR (S n) * del}
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n

Nbound I -> {n : nat | a + INR n * del < b <= a + INR (S n) * del}
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:Nbound I
H2:{n : nat | I n /\ (forall i : nat, I i -> (i <= n)%nat)}
x:nat
p:I x /\ (forall i : nat, I i -> (i <= x)%nat)
H3:I x
H4:forall i : nat, I i -> (i <= x)%nat

a + INR x * del < b
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:Nbound I
H2:{n : nat | I n /\ (forall i : nat, I i -> (i <= n)%nat)}
x:nat
p:I x /\ (forall i : nat, I i -> (i <= x)%nat)
H3:I x
H4:forall i : nat, I i -> (i <= x)%nat
b <= a + INR (S x) * del
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:Nbound I
H2:{n : nat | I n /\ (forall i : nat, I i -> (i <= n)%nat)}
x:nat
p:I x /\ (forall i : nat, I i -> (i <= x)%nat)
H3:I x
H4:forall i : nat, I i -> (i <= x)%nat

b <= a + INR (S x) * del
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:Nbound I
H2:{n : nat | I n /\ (forall i : nat, I i -> (i <= n)%nat)}
x:nat
p:I x /\ (forall i : nat, I i -> (i <= x)%nat)
H3:I x
H4:forall i : nat, I i -> (i <= x)%nat
Hlt:a + INR (S x) * del < b

b <= a + INR (S x) * del
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:Nbound I
H2:{n : nat | I n /\ (forall i : nat, I i -> (i <= n)%nat)}
x:nat
p:I x /\ (forall i : nat, I i -> (i <= x)%nat)
H3:I x
H4:forall i : nat, I i -> (i <= x)%nat
Heq:a + INR (S x) * del = b
b <= a + INR (S x) * del
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:Nbound I
H2:{n : nat | I n /\ (forall i : nat, I i -> (i <= n)%nat)}
x:nat
p:I x /\ (forall i : nat, I i -> (i <= x)%nat)
H3:I x
H4:forall i : nat, I i -> (i <= x)%nat
Hgt:a + INR (S x) * del > b
b <= a + INR (S x) * del
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:Nbound I
H2:{n : nat | I n /\ (forall i : nat, I i -> (i <= n)%nat)}
x:nat
p:I x /\ (forall i : nat, I i -> (i <= x)%nat)
H3:I x
H4:forall i : nat, I i -> (i <= x)%nat
Heq:a + INR (S x) * del = b

b <= a + INR (S x) * del
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:Nbound I
H2:{n : nat | I n /\ (forall i : nat, I i -> (i <= n)%nat)}
x:nat
p:I x /\ (forall i : nat, I i -> (i <= x)%nat)
H3:I x
H4:forall i : nat, I i -> (i <= x)%nat
Hgt:a + INR (S x) * del > b
b <= a + INR (S x) * del
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:Nbound I
H2:{n : nat | I n /\ (forall i : nat, I i -> (i <= n)%nat)}
x:nat
p:I x /\ (forall i : nat, I i -> (i <= x)%nat)
H3:I x
H4:forall i : nat, I i -> (i <= x)%nat
Hgt:a + INR (S x) * del > b

b <= a + INR (S x) * del
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n

Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n

0 <= (b - a) / del
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:0 <= (b - a) / del
Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:0 <= (b - a) / del

Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:0 <= (b - a) / del
H2:IZR (up ((b - a) / del)) > (b - a) / del
H3:IZR (up ((b - a) / del)) - (b - a) / del <= 1

(0 <= up ((b - a) / del))%Z
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:0 <= (b - a) / del
H2:IZR (up ((b - a) / del)) > (b - a) / del
H3:IZR (up ((b - a) / del)) - (b - a) / del <= 1
H4:(0 <= up ((b - a) / del))%Z
Nbound I
a, b:R
del:posreal
H:a < b
I:=fun n : nat => a + INR n * del < b:nat -> Prop
H0:exists n : nat, I n
H1:0 <= (b - a) / del
H2:IZR (up ((b - a) / del)) > (b - a) / del
H3:IZR (up ((b - a) / del)) - (b - a) / del <= 1
H4:(0 <= up ((b - a) / del))%Z

Nbound I
assert (H5 := IZN _ H4); elim H5; clear H5; intros N H5; unfold Nbound; exists N; intros; unfold I in H6; apply INR_le; rewrite H5 in H2; rewrite <- INR_IZR_INZ in H2; left; apply Rle_lt_trans with ((b - a) / del); try assumption; apply Rmult_le_reg_l with (pos del); [ apply (cond_pos del) | unfold Rdiv; rewrite <- (Rmult_comm (/ del)); rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_l; rewrite Rmult_comm; apply Rplus_le_reg_l with a; replace (a + (b - a)) with b; [ left; assumption | ring ] | assert (H7 := cond_pos del); red; intro; rewrite H8 in H7; elim (Rlt_irrefl _ H7) ] ]. Qed. Fixpoint SubEquiN (N:nat) (x y:R) (del:posreal) : Rlist := match N with | O => cons y nil | S p => cons x (SubEquiN p (x + del) y del) end. Definition max_N (a b:R) (del:posreal) (h:a < b) : nat := let (N,_) := maxN del h in N. Definition SubEqui (a b:R) (del:posreal) (h:a < b) : Rlist := SubEquiN (S (max_N del h)) a b del.

forall (f : R -> R) (a b : R), a < b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> forall eps : posreal, {delta : posreal | delta <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps)}

forall (f : R -> R) (a b : R), a < b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> forall eps : posreal, {delta : posreal | delta <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps)}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps):R -> Prop

bound E
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps):R -> Prop
H1:bound E
{delta : posreal | delta <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps)}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps):R -> Prop
H1:bound E

{delta : posreal | delta <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps)}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps):R -> Prop
H1:bound E

exists x : R, E x
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps):R -> Prop
H1:bound E
H2:exists x : R, E x
{delta : posreal | delta <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps)}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < l -> Rabs (f x - f y) < eps):R -> Prop
H1:bound E
H2:exists x : R, E x

{delta : posreal | delta <= b - a /\ (forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps)}
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x

0 < x <= b - a -> {delta : posreal | delta <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < delta -> Rabs (f x0 - f y) < eps)}
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
H4:0 < x
H5:x <= b - a

{| pos := x; cond_pos := H4 |} <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
H4:0 < x
H5:x <= b - a
forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < {| pos := x; cond_pos := H4 |} -> Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
H4:0 < x
H5:x <= b - a

forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < {| pos := x; cond_pos := H4 |} -> Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R

Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R

((exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0)) -> False) -> False
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H11:((exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0)) -> False) -> False
Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x y0 : R, a <= x <= b -> a <= y0 <= b -> Rabs (x - y0) < l -> Rabs (f x - f y0) < eps):R -> Prop
x0, y:R
D:=Rabs (x0 - y):R
H:(exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0)) -> False

(exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0))
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H11:((exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0)) -> False) -> False
Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x y1 : R, a <= x <= b -> a <= y1 <= b -> Rabs (x - y1) < l -> Rabs (f x - f y1) < eps):R -> Prop
x0, y:R
D:=Rabs (x0 - y):R
H:(exists y1 : R, D < y1 /\ E y1) \/ (forall y1 : R, ~ (D < y1 /\ E y1)) -> False
y0:R
H0:D < y0 /\ E y0

(exists y1 : R, D < y1 /\ E y1) \/ (forall y1 : R, ~ (D < y1 /\ E y1))
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H11:((exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0)) -> False) -> False
Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H11:((exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0)) -> False) -> False

Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H11:((exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0)) -> False) -> False
H30:eps <= Rabs (f x0 - f y)

False
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H30:eps <= Rabs (f x0 - f y)
H11:(exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0))

False
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H11:(exists y0 : R, D < y0 /\ E y0) \/ (forall y0 : R, ~ (D < y0 /\ E y0))

Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H11:exists y0 : R, D < y0 /\ E y0

Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H12:forall y0 : R, ~ (D < y0 /\ E y0)
Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H12:forall y0 : R, ~ (D < y0 /\ E y0)

Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H12:forall y0 : R, ~ (D < y0 /\ E y0)

is_upper_bound E D
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H12:forall y0 : R, ~ (D < y0 /\ E y0)
H13:is_upper_bound E D
Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x1 y0 : R, a <= x1 <= b -> a <= y0 <= b -> Rabs (x1 - y0) < l -> Rabs (f x1 - f y0) < eps):R -> Prop
H1:bound E
H2:exists x1 : R, E x1
H3:{m : R | is_lub E m}
x:R
p:is_upper_bound E x /\ (forall b0 : R, is_upper_bound E b0 -> x <= b0)
H4:0 < x
H5:x <= b - a
H6:forall x1 : R, E x1 -> x1 <= x
H7:forall b0 : R, is_upper_bound E b0 -> x <= b0
x0, y:R
H8:a <= x0 <= b
H9:a <= y <= b
H10:Rabs (x0 - y) < {| pos := x; cond_pos := H4 |}
D:=Rabs (x0 - y):R
H12:forall y0 : R, ~ (D < y0 /\ E y0)
H13:is_upper_bound E D

Rabs (f x0 - f y) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x
0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
p:is_lub E x

0 < x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
H4:forall x0 : R, E x0 -> x0 <= x
H5:forall b0 : R, (forall x0 : R, E x0 -> x0 <= b0) -> x <= b0

0 < x
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
H4:forall x0 : R, E x0 -> x0 <= x
H5:forall b0 : R, (forall x0 : R, E x0 -> x0 <= b0) -> x <= b0
x <= b - a
f:R -> R
a, b:R
H:a < b
H0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
eps:posreal
E:=fun l : R => 0 < l <= b - a /\ (forall x0 y : R, a <= x0 <= b -> a <= y <= b -> Rabs (x0 - y) < l -> Rabs (f x0 - f y) < eps):R -> Prop
H1:bound E
H2:exists x0 : R, E x0
H3:{m : R | is_lub E m}
x:R
H4:forall x0 : R, E x0 -> x0 <= x
H5:forall b0 : R, (forall x0 : R, E x0 -> x0 <= b0) -> x <= b0

x <= b - a
apply H5; intros; unfold E in H6; elim H6; clear H6; intros H6 _; elim H6; intros; assumption. Qed.

forall (f : R -> R) (a b : R), (forall x : R, a <= x <= b -> continuity_pt f x) -> forall eps : posreal, {delta : posreal | forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps}

forall (f : R -> R) (a b : R), (forall x : R, a <= x <= b -> continuity_pt f x) -> forall eps : posreal, {delta : posreal | forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps}
f:R -> R
a, b:R
H:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
Hlt:a < b

{delta : posreal | forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps}
f:R -> R
a, b:R
H:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
Heq:a = b
{delta : posreal | forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps}
f:R -> R
a, b:R
H:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
Hgt:a > b
{delta : posreal | forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps}
f:R -> R
a, b:R
H:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
Heq:a = b

{delta : posreal | forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps}
f:R -> R
a, b:R
H:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
Hgt:a > b
{delta : posreal | forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps}
f:R -> R
a, b:R
H:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
Hgt:a > b

{delta : posreal | forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < delta -> Rabs (f x - f y) < eps}
exists (mkposreal _ Rlt_0_1); intros; elim H0; intros; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H3 H4) Hgt)). Qed.

forall (a b : R) (del : posreal) (h : a < b), pos_Rl (SubEqui del h) 0 = a

forall (a b : R) (del : posreal) (h : a < b), pos_Rl (SubEqui del h) 0 = a
intros; unfold SubEqui; case (maxN del h); intros; reflexivity. Qed.

forall (a b : R) (del : posreal) (h : a < b), pos_Rl (SubEqui del h) (Init.Nat.pred (Rlength (SubEqui del h))) = b

forall (a b : R) (del : posreal) (h : a < b), pos_Rl (SubEqui del h) (Init.Nat.pred (Rlength (SubEqui del h))) = b
a, b:R
del:posreal
h:a < b
x:nat

pos_Rl (SubEquiN (S (max_N del h)) a b del) (Init.Nat.pred (Rlength (SubEquiN (S (max_N del h)) a b del))) = b
cut (forall (x:nat) (a:R) (del:posreal), pos_Rl (SubEquiN (S x) a b del) (pred (Rlength (SubEquiN (S x) a b del))) = b); [ intro; apply H | simple induction x0; [ intros; reflexivity | intros; change (pos_Rl (SubEquiN (S n) (a0 + del0) b del0) (pred (Rlength (SubEquiN (S n) (a0 + del0) b del0))) = b) ; apply H ] ]. Qed.

forall (N : nat) (a b : R) (del : posreal), Rlength (SubEquiN N a b del) = S N

forall (N : nat) (a b : R) (del : posreal), Rlength (SubEquiN N a b del) = S N
simple induction N; intros; [ reflexivity | simpl; rewrite H; reflexivity ]. Qed.

forall (N : nat) (a b : R) (del : posreal) (i : nat), (i < S N)%nat -> pos_Rl (SubEquiN (S N) a b del) i = a + INR i * del

forall (N : nat) (a b : R) (del : posreal) (i : nat), (i < S N)%nat -> pos_Rl (SubEquiN (S N) a b del) i = a + INR i * del
simple induction N; [ intros; inversion H; [ simpl; ring | elim (le_Sn_O _ H1) ] | intros; induction i as [| i Hreci]; [ simpl; ring | change (pos_Rl (SubEquiN (S n) (a + del) b del) i = a + INR (S i) * del) ; rewrite H; [ rewrite S_INR; ring | apply lt_S_n; apply H0 ] ] ]. Qed.

forall (a b : R) (del : posreal) (h : a < b), Rlength (SubEqui del h) = S (S (max_N del h))

forall (a b : R) (del : posreal) (h : a < b), Rlength (SubEqui del h) = S (S (max_N del h))
intros; unfold SubEqui; apply SubEqui_P3. Qed.

forall (a b : R) (del : posreal) (h : a < b) (i : nat), (i < S (max_N del h))%nat -> pos_Rl (SubEqui del h) i = a + INR i * del

forall (a b : R) (del : posreal) (h : a < b) (i : nat), (i < S (max_N del h))%nat -> pos_Rl (SubEqui del h) i = a + INR i * del
intros; unfold SubEqui; apply SubEqui_P4; assumption. Qed.

forall (a b : R) (del : posreal) (h : a < b), ordered_Rlist (SubEqui del h)

forall (a b : R) (del : posreal) (h : a < b), ordered_Rlist (SubEqui del h)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
H1:i = max_N del h

pos_Rl (SubEqui del h) (max_N del h) <= pos_Rl (SubEqui del h) (S (max_N del h))
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h
pos_Rl (SubEqui del h) i <= pos_Rl (SubEqui del h) (S i)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
H1:i = max_N del h

a + INR (max_N del h) * del <= pos_Rl (SubEqui del h) (S (max_N del h))
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
H1:i = max_N del h
(max_N del h < S (max_N del h))%nat
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h
pos_Rl (SubEqui del h) i <= pos_Rl (SubEqui del h) (S i)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
H1:i = max_N del h

a + INR (max_N del h) * del <= pos_Rl (SubEqui del h) (Init.Nat.pred (Rlength (SubEqui del h)))
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
H1:i = max_N del h
Init.Nat.pred (Rlength (SubEqui del h)) = S (max_N del h)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
H1:i = max_N del h
(max_N del h < S (max_N del h))%nat
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h
pos_Rl (SubEqui del h) i <= pos_Rl (SubEqui del h) (S i)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
H1:i = max_N del h

Init.Nat.pred (Rlength (SubEqui del h)) = S (max_N del h)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
H1:i = max_N del h
(max_N del h < S (max_N del h))%nat
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h
pos_Rl (SubEqui del h) i <= pos_Rl (SubEqui del h) (S i)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
H1:i = max_N del h

(max_N del h < S (max_N del h))%nat
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h
pos_Rl (SubEqui del h) i <= pos_Rl (SubEqui del h) (S i)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h

pos_Rl (SubEqui del h) i <= pos_Rl (SubEqui del h) (S i)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h

a + INR i * del <= a + INR (S i) * del
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h
(S i < S (max_N del h))%nat
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h
(i < S (max_N del h))%nat
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h

a + INR i * del <= a + INR (S i) * del
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h
(S i < S (max_N del h))%nat
a, b:R
del:posreal
h:a < b
i:nat
H:(i < S (max_N del h))%nat
m:nat
H1:(S i <= max_N del h)%nat
H0:m = max_N del h

a + INR i * del <= a + INR (S i) * del
apply Rplus_le_compat_l; rewrite S_INR; rewrite Rmult_plus_distr_r; pattern (INR i * del) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; rewrite Rmult_1_l; left; apply (cond_pos del). Qed.

forall (a b : R) (del : posreal) (h : a < b) (i : nat), (i < Rlength (SubEqui del h))%nat -> a <= pos_Rl (SubEqui del h) i <= b

forall (a b : R) (del : posreal) (h : a < b) (i : nat), (i < Rlength (SubEqui del h))%nat -> a <= pos_Rl (SubEqui del h) i <= b
a, b:R
del:posreal
h:a < b
i:nat
H:(i < Rlength (SubEqui del h))%nat

a <= pos_Rl (SubEqui del h) i
a, b:R
del:posreal
h:a < b
i:nat
H:(i < Rlength (SubEqui del h))%nat
pos_Rl (SubEqui del h) i <= b
a, b:R
del:posreal
h:a < b
i:nat
H:(i < Rlength (SubEqui del h))%nat

ordered_Rlist (SubEqui del h)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < Rlength (SubEqui del h))%nat
In (pos_Rl (SubEqui del h) i) (SubEqui del h)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < Rlength (SubEqui del h))%nat
pos_Rl (SubEqui del h) i <= b
a, b:R
del:posreal
h:a < b
i:nat
H:(i < Rlength (SubEqui del h))%nat

In (pos_Rl (SubEqui del h) i) (SubEqui del h)
a, b:R
del:posreal
h:a < b
i:nat
H:(i < Rlength (SubEqui del h))%nat
pos_Rl (SubEqui del h) i <= b
a, b:R
del:posreal
h:a < b
i:nat
H:(i < Rlength (SubEqui del h))%nat

pos_Rl (SubEqui del h) i <= b
pattern b at 2; rewrite <- (SubEqui_P2 del h); apply RList_P7; [ apply SubEqui_P7 | elim (RList_P3 (SubEqui del h) (pos_Rl (SubEqui del h) i)); intros; apply H1; exists i; split; [ reflexivity | assumption ] ]. Qed.

forall (a b : R) (del : posreal) (f : R -> R) (h : a < b), {g : StepFun a b | g b = f b /\ (forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del h)))%nat -> constant_D_eq g (co_interval (pos_Rl (SubEqui del h) i) (pos_Rl (SubEqui del h) (S i))) (f (pos_Rl (SubEqui del h) i)))}

forall (a b : R) (del : posreal) (f : R -> R) (h : a < b), {g : StepFun a b | g b = f b /\ (forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del h)))%nat -> constant_D_eq g (co_interval (pos_Rl (SubEqui del h) i) (pos_Rl (SubEqui del h) (S i))) (f (pos_Rl (SubEqui del h) i)))}
intros; apply StepFun_P38; [ apply SubEqui_P7 | apply SubEqui_P1 | apply SubEqui_P2 ]. Qed.

forall (f : R -> R) (a b : R), a < b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b

forall (f : R -> R) (a b : R), a < b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal

0 < eps / (2 * (b - a))
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))

{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))

Rmin a b = a
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b:R
H:a <= b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))

Rmin a b = a
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a

{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a

Rmax a b = b
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b:R
H:a <= b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a

Rmax a b = b
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b

{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
Rabs (RiemannInt_SF {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |}) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
Rabs (eps * (/ 2 * / (b - a)) * (b - a)) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
Rabs (eps * (/ 2 * 1)) < eps
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
eps * / 2 < eps
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
eps * / 2 >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
0 < 2
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 * (eps * / 2) < 2 * eps
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
eps * / 2 >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 * (eps * / 2) < 2 * eps
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
eps * / 2 >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
1 * eps < 2 * eps
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
eps * / 2 >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
eps * / 2 >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
eps * / 2 >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
0 < eps
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
0 < / 2
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
0 < / 2
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
2 <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
b - a <> 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= {| fe := fct_cte (eps / (2 * (b - a))); pre := StepFun_P4 a b (eps / (2 * (b - a))) |} t
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b

(forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)) -> Rabs (f t - phi t) <= eps / (2 * (b - a))
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
H9:t = b

Rabs (f t - phi t) <= eps / (2 * (b - a))
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
H9:exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t
Rabs (f t - phi t) <= eps / (2 * (b - a))
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
H9:exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t

Rabs (f t - phi t) <= eps / (2 * (b - a))
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)

a <= t <= b
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)
a <= pos_Rl (SubEqui del H) I <= b
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)
Rabs (t - pos_Rl (SubEqui del H) I) < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)

a <= pos_Rl (SubEqui del H) I <= b
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)
Rabs (t - pos_Rl (SubEqui del H) I) < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)

(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)
(Init.Nat.pred (Rlength (SubEqui del H)) < Rlength (SubEqui del H))%nat
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)
Rabs (t - pos_Rl (SubEqui del H) I) < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)

(Init.Nat.pred (Rlength (SubEqui del H)) < Rlength (SubEqui del H))%nat
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)
Rabs (t - pos_Rl (SubEqui del H) I) < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H10:co_interval (pos_Rl (SubEqui del H) I) (pos_Rl (SubEqui del H) (S I)) t
H11:phi t = f (pos_Rl (SubEqui del H) I)

Rabs (t - pos_Rl (SubEqui del H) I) < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)

t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H

t - pos_Rl (SubEqui del H) (max_N del H) < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H

pos_Rl (SubEqui del H) (max_N del H) + (t - pos_Rl (SubEqui del H) (max_N del H)) < pos_Rl (SubEqui del H) (max_N del H) + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H

t < b
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H
b <= pos_Rl (SubEqui del H) (max_N del H) + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S (max_N del H))
H14:I = max_N del H

S (max_N del H) = Init.Nat.pred (Rlength (SubEqui del H))
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S (max_N del H))
H14:I = max_N del H
H13:S (max_N del H) = Init.Nat.pred (Rlength (SubEqui del H))
t < b
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H
b <= pos_Rl (SubEqui del H) (max_N del H) + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S (max_N del H))
H14:I = max_N del H
H13:S (max_N del H) = Init.Nat.pred (Rlength (SubEqui del H))

t < b
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H
b <= pos_Rl (SubEqui del H) (max_N del H) + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H

b <= pos_Rl (SubEqui del H) (max_N del H) + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H

b <= a + INR (max_N del H) * del + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H
(max_N del H < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
H14:I = max_N del H

b <= a + INR (max_N del H) * del + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H

t - pos_Rl (SubEqui del H) I < del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H

t < pos_Rl (SubEqui del H) (S I)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
pos_Rl (SubEqui del H) (S I) = pos_Rl (SubEqui del H) I + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H

pos_Rl (SubEqui del H) (S I) = pos_Rl (SubEqui del H) I + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H

a + INR (S I) * del = a + INR I * del + del
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
(I < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
(S I < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H

(I < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H
(S I < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < S (max_N del H))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
m:nat
H14:(S I <= max_N del H)%nat
H13:m = max_N del H

(S I < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)
t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
H8:forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
I:nat
H9:(I < Init.Nat.pred (Rlength (SubEqui del H)))%nat
H11:phi t = f (pos_Rl (SubEqui del H) I)
H10:pos_Rl (SubEqui del H) I <= t
H12:t < pos_Rl (SubEqui del H) (S I)

t - pos_Rl (SubEqui del H) I >= 0
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b
forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
H0:forall x : R, a <= x <= b -> continuity_pt f x
eps:posreal
H1:0 < eps / (2 * (b - a))
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
H4:forall x y : R, a <= x <= b -> a <= y <= b -> Rabs (x - y) < del -> Rabs (f x - f y) < {| pos := eps / (2 * (b - a)); cond_pos := H1 |}
phi:StepFun a b
H5:phi b = f b
H6:forall i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat -> constant_D_eq phi (co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i))) (f (pos_Rl (SubEqui del H) i))
t:R
H7:a <= t <= b

forall t0 : R, a <= t0 <= b -> t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 = b

t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b

t0 = b \/ (exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop

exists n : nat, I n
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n

exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n

Nbound I
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
i:nat
H4:I i
x:nat
H5:b <= a + INR (S x) * del

0 < del
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
i:nat
H4:I i
x:nat
H5:b <= a + INR (S x) * del
del * INR i <= del * INR (S x)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
i:nat
H4:I i
x:nat
H5:b <= a + INR (S x) * del

del * INR i <= del * INR (S x)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I

exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat

(N < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
x:nat
H7:a + INR x * del < b
H9:b <= a + INR (S x) * del

0 < del
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
x:nat
H7:a + INR x * del < b
H9:b <= a + INR (S x) * del
del * INR N < del * INR (S x)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
x:nat
H7:a + INR x * del < b
H9:b <= a + INR (S x) * del

del * INR N < del * INR (S x)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:a + INR N * del <= t0
H6:forall i : nat, I i -> (i <= N)%nat
x:nat
H7:a + INR x * del < b
H9:b <= a + INR (S x) * del
H10:a <= t0
H11:t0 <= b

t0 < b
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:a + INR N * del <= t0
H6:forall i : nat, I i -> (i <= N)%nat
x:nat
H7:a + INR x * del < b
H9:b <= a + INR (S x) * del
H10:a <= t0
H11:t0 <= b
H12:t0 < b

t0 < b
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:a + INR N * del <= t0
H6:forall i : nat, I i -> (i <= N)%nat
x:nat
H7:a + INR x * del < b
H9:b <= a + INR (S x) * del
H10:a <= t0
H11:t0 <= b
H12:t0 = b
t0 < b
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:a + INR N * del <= t0
H6:forall i : nat, I i -> (i <= N)%nat
x:nat
H7:a + INR x * del < b
H9:b <= a + INR (S x) * del
H10:a <= t0
H11:t0 <= b
H12:t0 = b

t0 < b
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat

exists i : nat, (i < Init.Nat.pred (Rlength (SubEqui del H)))%nat /\ co_interval (pos_Rl (SubEqui del H) i) (pos_Rl (SubEqui del H) (S i)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat

(N < Init.Nat.pred (Rlength (SubEqui del H)))%nat
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
co_interval (pos_Rl (SubEqui del H) N) (pos_Rl (SubEqui del H) (S N)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat

co_interval (pos_Rl (SubEqui del H) N) (pos_Rl (SubEqui del H) (S N)) t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat

pos_Rl (SubEqui del H) N <= t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat

a + INR N * del <= t0
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
(N < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat

(N < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat

t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H

t0 < pos_Rl (SubEqui del H) (S (max_N del H))
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H

t0 < pos_Rl (SubEqui del H) (Init.Nat.pred (Rlength (SubEqui del H)))
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H
Init.Nat.pred (Rlength (SubEqui del H)) = S (max_N del H)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H
H9:a <= t0
H11:t0 <= b

t0 < b
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H
Init.Nat.pred (Rlength (SubEqui del H)) = S (max_N del H)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H
H9:a <= t0
H11:t0 <= b
H12:t0 < b

t0 < b
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H
H9:a <= t0
H11:t0 <= b
H12:t0 = b
t0 < b
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H
Init.Nat.pred (Rlength (SubEqui del H)) = S (max_N del H)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H
H9:a <= t0
H11:t0 <= b
H12:t0 = b

t0 < b
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H
Init.Nat.pred (Rlength (SubEqui del H)) = S (max_N del H)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
H10:N = max_N del H

Init.Nat.pred (Rlength (SubEqui del H)) = S (max_N del H)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H

t0 < pos_Rl (SubEqui del H) (S N)
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H

t0 < a + INR (S N) * del
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
(S N < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
Hle:a + INR (S N) * del <= t0

t0 < a + INR (S N) * del
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
Hnle:~ a + INR (S N) * del <= t0
t0 < a + INR (S N) * del
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
(S N < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
Hnle:~ a + INR (S N) * del <= t0

t0 < a + INR (S N) * del
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H
(S N < S (max_N del H))%nat
f:R -> R
a, b:R
H:a < b
eps:posreal
H2:Rmin a b = a
H3:Rmax a b = b
del:posreal
t0:R
H8:a <= t0 <= b
H0:t0 <> b
I:=fun j : nat => a + INR j * del <= t0:nat -> Prop
H1:exists n : nat, I n
H4:Nbound I
N:nat
H5:I N
H6:forall i : nat, I i -> (i <= N)%nat
H7:(N < S (max_N del H))%nat
m:nat
H10:(S N <= max_N del H)%nat
H9:m = max_N del H

(S N < S (max_N del H))%nat
apply le_lt_n_Sm; assumption. Qed.

forall (f : R -> R) (a : R), Riemann_integrable f a a

forall (f : R -> R) (a : R), Riemann_integrable f a a
f:R -> R
a:R
eps:posreal

forall t : R, Rmin a a <= t <= Rmax a a -> Rabs (f t - {| fe := fct_cte (f a); pre := StepFun_P4 a a (f a) |} t) <= {| fe := fct_cte 0; pre := StepFun_P4 a a 0 |} t
f:R -> R
a:R
eps:posreal
Rabs (RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a a 0 |}) < eps
f:R -> R
a:R
eps:posreal
t:R
H:Rmin a a <= t <= Rmax a a

Rabs (f a - f a) <= 0
f:R -> R
a:R
eps:posreal
t:R
H:Rmin a a <= t <= Rmax a a
a = t
f:R -> R
a:R
eps:posreal
Rabs (RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a a 0 |}) < eps
f:R -> R
a:R
eps:posreal
t:R
H:Rmin a a <= t <= Rmax a a

a = t
f:R -> R
a:R
eps:posreal
Rabs (RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a a 0 |}) < eps
f:R -> R
a:R
eps:posreal
t:R
H:Rmin a a <= t <= Rmax a a

a <= t <= a -> a = t
f:R -> R
a:R
eps:posreal
Rabs (RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a a 0 |}) < eps
f:R -> R
a:R
eps:posreal

Rabs (RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a a 0 |}) < eps
rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos eps). Qed.

forall (f : R -> R) (a b : R), a <= b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b

forall (f : R -> R) (a b : R), a <= b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> Riemann_integrable f a b
intros; destruct (total_order_T a b) as [[Hlt| -> ]|Hgt]; [ apply RiemannInt_P6; assumption | apply RiemannInt_P7 | elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)) ]. Qed.

forall (f : R -> R) (a b : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2

forall (f : R -> R) (a b : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a

Un_cv ?Un (RiemannInt pr1)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
Un_cv ?Un (- RiemannInt pr2)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a

Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) (- RiemannInt pr2)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x

(exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n) -> Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) (- x)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x

(exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n) -> (exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n) -> Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) (- x)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi1:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H1:Un_cv (fun N : nat => RinvN N) 0
eps:R
H2:eps > 0

0 < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi1:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H1:Un_cv (fun N : nat => RinvN N) 0
eps:R
H2:eps > 0
H3:0 < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) (- x) < eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi1:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H1:Un_cv (fun N : nat => RinvN N) 0
eps:R
H2:eps > 0
H3:0 < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) (- x) < eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi1:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H1:forall n : nat, (n >= N0)%nat -> Rabs (/ (INR n + 1) - 0) < eps / 3

forall n : nat, (n >= N0)%nat -> RinvN n < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi1:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H1:forall n : nat, (n >= N0)%nat -> Rabs (/ (INR n + 1) - 0) < eps / 3
H4:forall n : nat, (n >= N0)%nat -> RinvN n < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) (- x) < eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi1:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H1:forall n : nat, (n >= N0)%nat -> Rabs (/ (INR n + 1) - 0) < eps / 3
H4:forall n : nat, (n >= N0)%nat -> RinvN n < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) (- x) < eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - - x) <= Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n)) + Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n)) + Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n)) + Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n)) + Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < 2 * (eps / 3) + eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n)) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat

Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b

Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b

Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) <= RiemannInt_SF {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} x0); pre := StepFun_P32 {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} |}
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} x0); pre := StepFun_P32 {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b

RiemannInt_SF {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} x0); pre := StepFun_P32 {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b

RiemannInt_SF {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} x0); pre := StepFun_P32 {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} |} <= RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |}
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b

forall x0 : R, a < x0 < b -> {| fe := fun x1 : R => Rabs ({| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x2; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} x1); pre := StepFun_P32 {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |} |} x0 <= {| fe := fun x1 : R => psi1 n x1 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x1; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b

Rabs (phi_sequence RinvN pr1 n x0 + -1 * phi_sequence RinvN pr2 n x0) <= Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b

Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b

Rmin a b = a
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a
Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a

Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a

Rmax a b = b
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a
H8:Rmax a b = b
Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a
H8:Rmax a b = b

Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a
H8:Rmax a b = b

Rabs (phi_sequence RinvN pr1 n x0 - f x0) <= psi1 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a
H8:Rmax a b = b
Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a
H8:Rmax a b = b
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t
H10:Rabs (RiemannInt_SF (psi1 n)) < RinvN n

a <= x0 <= b
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a
H8:Rmax a b = b
Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a
H8:Rmax a b = b

Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
x0:R
H6:a < x0 < b
H7:Rmin a b = a
H8:Rmax a b = b
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t
H10:Rabs (RiemannInt_SF (psi2 n)) < RinvN n

a <= x0 <= b
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b

RiemannInt_SF {| fe := fun x0 : R => psi1 n x0 + 1 * {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} x0; pre := StepFun_P28 1 (psi1 n) {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b

RiemannInt_SF (psi1 n) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b
RiemannInt_SF {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hle:a <= b

RiemannInt_SF {| fe := psi2 n; pre := StepFun_P6 (pre (psi2 n)) |} < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b

Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b

b <= a
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a

Rabs (RiemannInt_SF {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a

Rabs (RiemannInt_SF {| fe := {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} |}) |}) <= RiemannInt_SF {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} x0); pre := StepFun_P32 {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} |}
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} x0); pre := StepFun_P32 {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a

RiemannInt_SF {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} x0); pre := StepFun_P32 {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a

RiemannInt_SF {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} x0); pre := StepFun_P32 {| fe := fun x0 : R => phi_sequence RinvN pr1 n x0 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x0; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} |} <= RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |}
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a

forall x0 : R, b < x0 < a -> {| fe := fun x1 : R => Rabs ({| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x2; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} x1); pre := StepFun_P32 {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + -1 * {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |} x1; pre := StepFun_P6 (StepFun_P28 (-1) (phi_sequence RinvN pr1 n) {| fe := phi_sequence RinvN pr2 n; pre := StepFun_P6 (pre (phi_sequence RinvN pr2 n)) |}) |} |} x0 <= {| fe := fun x1 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x1 + 1 * psi2 n x1; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a

Rabs (phi_sequence RinvN pr1 n x0 + -1 * phi_sequence RinvN pr2 n x0) <= Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a

Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a

Rmin a b = b
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b
Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b

Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b

Rmax a b = a
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b
H8:Rmax a b = a
Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b
H8:Rmax a b = a

Rabs (phi_sequence RinvN pr1 n x0 - f x0) + Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi1 n x0 + psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b
H8:Rmax a b = a

Rabs (phi_sequence RinvN pr1 n x0 - f x0) <= psi1 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b
H8:Rmax a b = a
Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b
H8:Rmax a b = a
H9:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t
H10:Rabs (RiemannInt_SF (psi1 n)) < RinvN n

b <= x0 <= a
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b
H8:Rmax a b = a
Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
x0:R
H6:b < x0 < a
H7:Rmin a b = b
H8:Rmax a b = a

Rabs (f x0 - phi_sequence RinvN pr2 n x0) <= psi2 n x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a

RiemannInt_SF {| fe := fun x0 : R => {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a

RiemannInt_SF {| fe := psi1 n; pre := StepFun_P6 (pre (psi1 n)) |} < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Hnle:~ a <= b
Hyp:b <= a

RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 3
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
psi2:nat -> StepFun b a
H:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi1:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x < eps / 3
n:nat
H5:(n >= Nat.max N0 N1)%nat

2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x

exists psi2 : nat -> StepFun b a, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b a
x:R
HUn:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x

exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
split with (fun n:nat => proj1_sig (phi_sequence_prop RinvN pr1 n)); intro; apply (proj2_sig (phi_sequence_prop RinvN pr1 n)). Qed.

forall (f : R -> R) (a : R) (pr : Riemann_integrable f a a), RiemannInt pr = 0

forall (f : R -> R) (a : R) (pr : Riemann_integrable f a a), RiemannInt pr = 0
intros; assert (H := RiemannInt_P8 pr pr); apply Rmult_eq_reg_l with 2; [ rewrite Rmult_0_r; rewrite double; pattern (RiemannInt pr) at 2; rewrite H; apply Rplus_opp_r | discrR ]. Qed. (* L1([a,b]) is a vectorial space *)

forall (f g : R -> R) (a b l : R), Riemann_integrable f a b -> Riemann_integrable g a b -> Riemann_integrable (fun x : R => f x + l * g x) a b

forall (f g : R -> R) (a b l : R), Riemann_integrable f a b -> Riemann_integrable g a b -> Riemann_integrable (fun x : R => f x + l * g x) a b
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Heq:l = 0

{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Hneq:l <> 0
{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Hneq:l <> 0

{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Hneq:l <> 0

0 < eps / 2
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Hneq:l <> 0
H:0 < eps / 2

{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Hneq:l <> 0
H:0 < eps / 2

0 < eps / (2 * Rabs l)
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)

{phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f, g:R -> R
a, b, l:R
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x:StepFun a b
p:{psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= psi t) /\ Rabs (RiemannInt_SF psi) < {| pos := eps / 2; cond_pos := H |}}
x0:StepFun a b
p0:{psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= psi t) /\ Rabs (RiemannInt_SF psi) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}}
x1:StepFun a b
p1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t) /\ Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
x2:StepFun a b
p2:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t) /\ Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}

{psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - {| fe := fun x3 : R => x x3 + l * x0 x3; pre := StepFun_P28 l x x0 |} t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - {| fe := fun x3 : R => x x3 + l * x0 x3; pre := StepFun_P28 l x x0 |} t) <= {| fe := fun x3 : R => x1 x3 + Rabs l * x2 x3; pre := StepFun_P28 (Rabs l) x1 x2 |} t
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
Rabs (RiemannInt_SF {| fe := fun x3 : R => x1 x3 + Rabs l * x2 x3; pre := StepFun_P28 (Rabs l) x1 x2 |}) < eps
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - x0 t0) <= x2 t0
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - x t0) <= x1 t0
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
t:R
H5:Rmin a b <= t <= Rmax a b

Rabs (f t + l * g t - (x t + l * x0 t)) <= Rabs (f t - x t) + Rabs (l * (g t - x0 t))
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - x0 t0) <= x2 t0
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - x t0) <= x1 t0
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
t:R
H5:Rmin a b <= t <= Rmax a b
Rabs (f t - x t) + Rabs (l * (g t - x0 t)) <= x1 t + Rabs l * x2 t
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
Rabs (RiemannInt_SF {| fe := fun x3 : R => x1 x3 + Rabs l * x2 x3; pre := StepFun_P28 (Rabs l) x1 x2 |}) < eps
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - x0 t0) <= x2 t0
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - x t0) <= x1 t0
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
t:R
H5:Rmin a b <= t <= Rmax a b

Rabs (f t - x t) + Rabs (l * (g t - x0 t)) <= x1 t + Rabs l * x2 t
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
Rabs (RiemannInt_SF {| fe := fun x3 : R => x1 x3 + Rabs l * x2 x3; pre := StepFun_P28 (Rabs l) x1 x2 |}) < eps
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}

Rabs (RiemannInt_SF {| fe := fun x3 : R => x1 x3 + Rabs l * x2 x3; pre := StepFun_P28 (Rabs l) x1 x2 |}) < eps
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}

Rabs (RiemannInt_SF x1 + Rabs l * RiemannInt_SF x2) <= Rabs (RiemannInt_SF x1) + Rabs (Rabs l * RiemannInt_SF x2)
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
Rabs (RiemannInt_SF x1) + Rabs (Rabs l * RiemannInt_SF x2) < eps
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}

Rabs (RiemannInt_SF x1) + Rabs (Rabs l * RiemannInt_SF x2) < eps
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}

Rabs (RiemannInt_SF x1) < eps / 2
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
Rabs (Rabs l * RiemannInt_SF x2) < eps / 2
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}

Rabs (Rabs l * RiemannInt_SF x2) < eps / 2
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}

0 < / Rabs l
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}
/ Rabs l * (Rabs l * Rabs (RiemannInt_SF x2)) < / Rabs l * (eps / 2)
f, g:R -> R
a, b, l:R
eps:posreal
Hneq:l <> 0
H:0 < eps / 2
H0:0 < eps / (2 * Rabs l)
x, x0, x1, x2:StepFun a b
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - x0 t) <= x2 t
H2:Rabs (RiemannInt_SF x2) < {| pos := eps / (2 * Rabs l); cond_pos := H0 |}
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - x t) <= x1 t
H4:Rabs (RiemannInt_SF x1) < {| pos := eps / 2; cond_pos := H |}

/ Rabs l * (Rabs l * Rabs (RiemannInt_SF x2)) < / Rabs l * (eps / 2)
rewrite <- Rmult_assoc; rewrite <- Rinv_l_sym; [ rewrite Rmult_1_l; replace (/ Rabs l * (eps / 2)) with (eps / (2 * Rabs l)); [ apply H2 | unfold Rdiv; rewrite Rinv_mult_distr; [ ring | discrR | apply Rabs_no_R0; assumption ] ] | apply Rabs_no_R0; assumption ]. Qed.

forall (f : R -> R) (a b l : R) (un : nat -> posreal) (phi1 phi2 psi1 psi2 : nat -> StepFun a b), Un_cv (fun x : nat => un x) 0 -> (forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n) -> (forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n) -> Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) l -> Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) l

forall (f : R -> R) (a b l : R) (un : nat -> posreal) (phi1 phi2 psi1 psi2 : nat -> StepFun a b), Un_cv (fun x : nat => un x) 0 -> (forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n) -> (forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n) -> Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) l -> Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) l
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:a <= b

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:a <= b

0 < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n : nat, (n >= N0)%nat -> R_dist (un n) 0 < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n : nat, (n >= N0)%nat -> R_dist (un n) 0 < eps / 3
N1:nat
H2:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi2 n) - l) < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi2 n) - l) <= Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l) < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l) < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l) < 2 * (eps / 3) + eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n)) < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |} x); pre := StepFun_P32 {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |} |}
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |} x); pre := StepFun_P32 {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |} |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |} x); pre := StepFun_P32 {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |} |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |} x); pre := StepFun_P32 {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |} |} <= RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b

Rabs (phi2 n x + -1 * phi1 n x) <= psi1 n x + psi2 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b

Rabs (phi2 n x + -1 * phi1 n x) <= Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x) <= psi1 n x + psi2 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b

Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x) <= psi1 n x + psi2 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b

Rabs (phi2 n x - f x) <= psi2 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n

Rmin a b = a
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = a
Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = a

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = a

Rmax a b = b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = a
H11:Rmax a b = b
Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = a
H11:Rmax a b = b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b

Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n

Rmin a b = a
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = a
Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = a

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = a

Rmax a b = b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = a
H11:Rmax a b = b
Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
x:R
H6:a < x < b
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = a
H11:Rmax a b = b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

RiemannInt_SF (psi1 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

RiemannInt_SF (psi1 n) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H7:Rabs (RiemannInt_SF (psi1 n)) < un n

RiemannInt_SF (psi1 n) <= Rabs (RiemannInt_SF (psi1 n))
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H7:Rabs (RiemannInt_SF (psi1 n)) < un n
Rabs (RiemannInt_SF (psi1 n)) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H7:Rabs (RiemannInt_SF (psi1 n)) < un n

Rabs (RiemannInt_SF (psi1 n)) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

R_dist (un n) 0 < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

(N0 <= N)%nat
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

un n >= 0
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

RiemannInt_SF (psi2 n) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < un n

RiemannInt_SF (psi2 n) <= Rabs (RiemannInt_SF (psi2 n))
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < un n
Rabs (RiemannInt_SF (psi2 n)) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < un n

Rabs (RiemannInt_SF (psi2 n)) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

R_dist (un n) 0 < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b

0 < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (un n) 0 < eps0
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
H2:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n : nat, (n >= N0)%nat -> R_dist (un n) 0 < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < un n
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < un n
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n : nat, (n >= N0)%nat -> R_dist (un n) 0 < eps / 3
N1:nat
H2:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n)) l < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi2 n)) l < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi2 n) - l) < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi2 n) - l) <= Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l) < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l) < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat

b <= a
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l) < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l) < eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) + Rabs (RiemannInt_SF (phi1 n) - l) < 2 * (eps / 3) + eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

Rabs (RiemannInt_SF (phi2 n) - RiemannInt_SF (phi1 n)) < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

Rabs (RiemannInt_SF (phi2 n) + -1 * RiemannInt_SF (phi1 n)) < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

Rabs (RiemannInt_SF {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

Rabs (- RiemannInt_SF {| fe := {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

Rabs (RiemannInt_SF {| fe := {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |}) < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

Rabs (RiemannInt_SF {| fe := {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |}) <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} x); pre := StepFun_P32 {| fe := {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} |}
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} x); pre := StepFun_P32 {| fe := {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} x); pre := StepFun_P32 {| fe := {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} x); pre := StepFun_P32 {| fe := {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => phi2 n x + -1 * phi1 n x; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} |} <= RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |}
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

forall x : R, b < x < a -> {| fe := fun x0 : R => Rabs ({| fe := {| fe := fun x1 : R => phi2 n x1 + -1 * phi1 n x1; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x1 : R => phi2 n x1 + -1 * phi1 n x1; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} x0); pre := StepFun_P32 {| fe := {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => phi2 n x0 + -1 * phi1 n x0; pre := StepFun_P28 (-1) (phi2 n) (phi1 n) |}) |} |} x <= {| fe := {| fe := fun x0 : R => psi1 n x0 + 1 * psi2 n x0; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x0 : R => psi1 n x0 + 1 * psi2 n x0; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a

Rabs (phi2 n x + -1 * phi1 n x) <= psi1 n x + psi2 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a

Rabs (phi2 n x + -1 * phi1 n x) <= Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x) <= psi1 n x + psi2 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a

Rabs (phi2 n x - f x) + Rabs (f x - phi1 n x) <= psi1 n x + psi2 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a

Rabs (phi2 n x - f x) <= psi2 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n

Rmin a b = b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = b
Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = b

Rmax a b = a
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = b
H11:Rmax a b = a
Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H8:Rabs (RiemannInt_SF (psi2 n)) < un n
H10:Rmin a b = b
H11:Rmax a b = a

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a

Rabs (f x - phi1 n x) <= psi1 n x
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n

Rmin a b = b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = b
Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = b

Rmax a b = a
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = b
H11:Rmax a b = a
Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
x:R
H6:b < x < a
H7:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H8:Rabs (RiemannInt_SF (psi1 n)) < un n
H10:Rmin a b = b
H11:Rmax a b = a

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

- - RiemannInt_SF {| fe := {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}; pre := StepFun_P6 (pre {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |}) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

- RiemannInt_SF {| fe := fun x : R => psi1 n x + 1 * psi2 n x; pre := StepFun_P28 1 (psi1 n) (psi2 n) |} < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

- (RiemannInt_SF (psi1 n) + 1 * RiemannInt_SF (psi2 n)) < 2 * (eps / 3)
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

- (RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n)) < eps / 3 + eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

- RiemannInt_SF (psi1 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

- RiemannInt_SF (psi1 n) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H7:Rabs (RiemannInt_SF (psi1 n)) < un n

- RiemannInt_SF (psi1 n) <= Rabs (RiemannInt_SF (psi1 n))
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H7:Rabs (RiemannInt_SF (psi1 n)) < un n
Rabs (RiemannInt_SF (psi1 n)) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t
H7:Rabs (RiemannInt_SF (psi1 n)) < un n

Rabs (RiemannInt_SF (psi1 n)) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

R_dist (un n) 0 < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

(N0 <= N)%nat
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

un n >= 0
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

- RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

- RiemannInt_SF (psi2 n) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < un n

- RiemannInt_SF (psi2 n) <= Rabs (RiemannInt_SF (psi2 n))
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < un n
Rabs (RiemannInt_SF (psi2 n)) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
H6:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < un n

Rabs (RiemannInt_SF (psi2 n)) < un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

un n < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

R_dist (un n) 0 < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

R_dist (un n) 0 = un n
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

Rabs (RiemannInt_SF (phi1 n) - l) < eps / 3
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a
2 * (eps / 3) + eps / 3 = eps
f:R -> R
a, b, l:R
un:nat -> posreal
phi1, phi2, psi1, psi2:nat -> StepFun a b
H0:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < un n0
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < un n0
eps:R
H3:eps > 0
Hyp:~ a <= b
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (un n0) 0 < eps / 3
N1:nat
H2:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi1 n0)) l < eps / 3
N:=Nat.max N0 N1:nat
n:nat
H5:(n >= N)%nat
Hyp_b:b <= a

2 * (eps / 3) + eps / 3 = eps
apply Rmult_eq_reg_l with 3; [ unfold Rdiv; rewrite Rmult_plus_distr_l; do 2 rewrite (Rmult_comm 3); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. Qed.

forall (f g : R -> R) (a b l : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable g a b) (pr3 : Riemann_integrable (fun x : R => f x + l * g x) a b), a <= b -> RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2

forall (f g : R -> R) (a b l : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable g a b) (pr3 : Riemann_integrable (fun x : R => f x + l * g x) a b), a <= b -> RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x : R => f x + l * g x) a b
H:a <= b
H0:l = 0

RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x : R => f x + l * g x) a b
H:a <= b
H0:l <> 0
RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l = 0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0

x = x0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x : R => f x + l * g x) a b
H:a <= b
H0:l <> 0
RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x : R => f x + l * g x) a b
H:a <= b
H0:l <> 0

RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x : R => f x + l * g x) a b
H:a <= b
H0:l <> 0

Un_cv ?Un (RiemannInt pr3)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x : R => f x + l * g x) a b
H:a <= b
H0:l <> 0
Un_cv ?Un (RiemannInt pr1 + l * RiemannInt pr2)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x : R => f x + l * g x) a b
H:a <= b
H0:l <> 0

Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) (RiemannInt pr1 + l * RiemannInt pr2)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x

0 < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
H2:0 < eps / 5
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x0 + l * x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
H2:0 < eps / 5

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x0 + l * x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
N0:nat
H3:forall n : nat, (n >= N0)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x0 < eps / 5
N1:nat
H4:forall n : nat, (n >= N1)%nat -> R_dist (RinvN n) 0 < eps / 5

0 < eps / (5 * Rabs l)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
N0:nat
H3:forall n : nat, (n >= N0)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x0 < eps / 5
N1:nat
H4:forall n : nat, (n >= N1)%nat -> R_dist (RinvN n) 0 < eps / 5
H5:0 < eps / (5 * Rabs l)
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x0 + l * x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
N0:nat
H3:forall n : nat, (n >= N0)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x0 < eps / 5
N1:nat
H4:forall n : nat, (n >= N1)%nat -> R_dist (RinvN n) 0 < eps / 5
H5:0 < eps / (5 * Rabs l)

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x0 + l * x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n : nat, (n >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
N1:nat
H4:forall n : nat, (n >= N1)%nat -> Rabs (RinvN n - 0) < eps / 5
N2:nat
H6:forall n : nat, (n >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / (5 * Rabs l)
N3:nat
H5:forall n : nat, (n >= N3)%nat -> Rabs (RinvN n - 0) < eps / (5 * Rabs l)
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat

exists N4 : nat, forall n : nat, (n >= N4)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x0 + l * x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n : nat, (n >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
N1:nat
H4:forall n : nat, (n >= N1)%nat -> Rabs (RinvN n - 0) < eps / 5
N2:nat
H6:forall n : nat, (n >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / (5 * Rabs l)
N3:nat
H5:forall n : nat, (n >= N3)%nat -> Rabs (RinvN n - 0) < eps / (5 * Rabs l)
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat

forall n : nat, (n >= N1)%nat -> RinvN n < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n : nat, (n >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
N1:nat
H4:forall n : nat, (n >= N1)%nat -> Rabs (RinvN n - 0) < eps / 5
N2:nat
H6:forall n : nat, (n >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / (5 * Rabs l)
N3:nat
H5:forall n : nat, (n >= N3)%nat -> Rabs (RinvN n - 0) < eps / (5 * Rabs l)
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H7:forall n : nat, (n >= N1)%nat -> RinvN n < eps / 5
exists N4 : nat, forall n : nat, (n >= N4)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x0 + l * x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n : nat, (n >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
N1:nat
H4:forall n : nat, (n >= N1)%nat -> Rabs (RinvN n - 0) < eps / 5
N2:nat
H6:forall n : nat, (n >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / (5 * Rabs l)
N3:nat
H5:forall n : nat, (n >= N3)%nat -> Rabs (RinvN n - 0) < eps / (5 * Rabs l)
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H7:forall n : nat, (n >= N1)%nat -> RinvN n < eps / 5

exists N4 : nat, forall n : nat, (n >= N4)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x0 + l * x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n : nat, (n >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
N1, N2:nat
H6:forall n : nat, (n >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / (5 * Rabs l)
N3:nat
H5:forall n : nat, (n >= N3)%nat -> Rabs (RinvN n - 0) < eps / (5 * Rabs l)
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n : nat, (n >= N1)%nat -> RinvN n < eps / 5

forall n : nat, (n >= N3)%nat -> RinvN n < eps / (5 * Rabs l)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n : nat, (n >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
N1, N2:nat
H6:forall n : nat, (n >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / (5 * Rabs l)
N3:nat
H5:forall n : nat, (n >= N3)%nat -> Rabs (RinvN n - 0) < eps / (5 * Rabs l)
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n : nat, (n >= N1)%nat -> RinvN n < eps / 5
H7:forall n : nat, (n >= N3)%nat -> RinvN n < eps / (5 * Rabs l)
exists N4 : nat, forall n : nat, (n >= N4)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x0 + l * x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n : nat, (n >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
N1, N2:nat
H6:forall n : nat, (n >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / (5 * Rabs l)
N3:nat
H5:forall n : nat, (n >= N3)%nat -> Rabs (RinvN n - 0) < eps / (5 * Rabs l)
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n : nat, (n >= N1)%nat -> RinvN n < eps / 5
H7:forall n : nat, (n >= N3)%nat -> RinvN n < eps / (5 * Rabs l)

exists N4 : nat, forall n : nat, (n >= N4)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x0 + l * x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (x0 + l * x)) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (x0 + l * x)) <= Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) + Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) + Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (x0 + l * x)) <= Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 + l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x))
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 + l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)) <= Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) + Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) + Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0 + l * (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)) <= Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) + Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) + Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) + Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) + Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < 3 * (eps / 5) + eps / 5 + eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

exists psi1 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
H7:exists psi1 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
H7:exists psi1 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
H7:exists psi1 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0

exists psi2 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
H7:exists psi1 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
H8:exists psi2 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
H7:exists psi1 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
H8:exists psi2 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
H7:exists psi1 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
H8:exists psi2 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0

exists psi3 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
H7:exists psi1 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
H8:exists psi2 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
H9:exists psi3 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
H7:exists psi1 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
H8:exists psi2 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
H9:exists psi3 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + l * RiemannInt_SF (phi_sequence RinvN pr2 n))) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0

Rmin a b = a
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
Rabs (RiemannInt_SF {| fe := fun x1 : R => phi_sequence RinvN pr3 n x1 + -1 * {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |}) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a

Rabs (RiemannInt_SF {| fe := fun x1 : R => phi_sequence RinvN pr3 n x1 + -1 * {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |}) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a

Rmax a b = b
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
Rabs (RiemannInt_SF {| fe := fun x1 : R => phi_sequence RinvN pr3 n x1 + -1 * {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |}) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

Rabs (RiemannInt_SF {| fe := fun x1 : R => phi_sequence RinvN pr3 n x1 + -1 * {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |}) < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

Rabs (RiemannInt_SF {| fe := fun x1 : R => phi_sequence RinvN pr3 n x1 + -1 * {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |}) <= RiemannInt_SF {| fe := fun x1 : R => Rabs ({| fe := fun x2 : R => phi_sequence RinvN pr3 n x2 + -1 * {| fe := fun x3 : R => phi_sequence RinvN pr1 n x3 + l * phi_sequence RinvN pr2 n x3; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x2; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} x1); pre := StepFun_P32 {| fe := fun x1 : R => phi_sequence RinvN pr3 n x1 + -1 * {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} |}
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => Rabs ({| fe := fun x2 : R => phi_sequence RinvN pr3 n x2 + -1 * {| fe := fun x3 : R => phi_sequence RinvN pr1 n x3 + l * phi_sequence RinvN pr2 n x3; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x2; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} x1); pre := StepFun_P32 {| fe := fun x1 : R => phi_sequence RinvN pr3 n x1 + -1 * {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

RiemannInt_SF {| fe := fun x1 : R => Rabs ({| fe := fun x2 : R => phi_sequence RinvN pr3 n x2 + -1 * {| fe := fun x3 : R => phi_sequence RinvN pr1 n x3 + l * phi_sequence RinvN pr2 n x3; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x2; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} x1); pre := StepFun_P32 {| fe := fun x1 : R => phi_sequence RinvN pr3 n x1 + -1 * {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

RiemannInt_SF {| fe := fun x1 : R => Rabs ({| fe := fun x2 : R => phi_sequence RinvN pr3 n x2 + -1 * {| fe := fun x3 : R => phi_sequence RinvN pr1 n x3 + l * phi_sequence RinvN pr2 n x3; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x2; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} x1); pre := StepFun_P32 {| fe := fun x1 : R => phi_sequence RinvN pr3 n x1 + -1 * {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x1; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x1 : R => phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} |} <= RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |}
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

forall x1 : R, a < x1 < b -> {| fe := fun x2 : R => Rabs ({| fe := fun x3 : R => phi_sequence RinvN pr3 n x3 + -1 * {| fe := fun x4 : R => phi_sequence RinvN pr1 n x4 + l * phi_sequence RinvN pr2 n x4; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x3; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x3 : R => phi_sequence RinvN pr1 n x3 + l * phi_sequence RinvN pr2 n x3; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} x2); pre := StepFun_P32 {| fe := fun x2 : R => phi_sequence RinvN pr3 n x2 + -1 * {| fe := fun x3 : R => phi_sequence RinvN pr1 n x3 + l * phi_sequence RinvN pr2 n x3; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} x2; pre := StepFun_P28 (-1) (phi_sequence RinvN pr3 n) {| fe := fun x2 : R => phi_sequence RinvN pr1 n x2 + l * phi_sequence RinvN pr2 n x2; pre := StepFun_P28 l (phi_sequence RinvN pr1 n) (phi_sequence RinvN pr2 n) |} |} |} x1 <= {| fe := fun x2 : R => psi3 n x2 + 1 * {| fe := fun x3 : R => psi1 n x3 + Rabs l * psi2 n x3; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x2; pre := StepFun_P28 1 (psi3 n) {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b

Rabs (phi_sequence RinvN pr3 n x1 + -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)) <= psi3 n x1 + (psi1 n x1 + Rabs l * psi2 n x1)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b

Rabs (phi_sequence RinvN pr3 n x1 + -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)) <= Rabs (phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1)) + Rabs (f x1 + l * g x1 + -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1))
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b
Rabs (phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1)) + Rabs (f x1 + l * g x1 + -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)) <= psi3 n x1 + (psi1 n x1 + Rabs l * psi2 n x1)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b

Rabs (phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1)) + Rabs (f x1 + l * g x1 + -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1)) <= psi3 n x1 + (psi1 n x1 + Rabs l * psi2 n x1)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b

Rabs (phi_sequence RinvN pr3 n x1 - (f x1 + l * g x1)) <= psi3 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b
Rabs (f x1 + (l * g x1 + -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1))) <= psi1 n x1 + Rabs l * psi2 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b
H13:forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n t) <= psi3 n t
H14:Rabs (RiemannInt_SF (psi3 n)) < RinvN n

a <= x1 <= b
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b
Rabs (f x1 + (l * g x1 + -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1))) <= psi1 n x1 + Rabs l * psi2 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b

Rabs (f x1 + (l * g x1 + -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1))) <= psi1 n x1 + Rabs l * psi2 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b

Rabs (f x1 + (l * g x1 + -1 * (phi_sequence RinvN pr1 n x1 + l * phi_sequence RinvN pr2 n x1))) <= Rabs (f x1 - phi_sequence RinvN pr1 n x1) + Rabs l * Rabs (g x1 - phi_sequence RinvN pr2 n x1)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b
Rabs (f x1 - phi_sequence RinvN pr1 n x1) + Rabs l * Rabs (g x1 - phi_sequence RinvN pr2 n x1) <= psi1 n x1 + Rabs l * psi2 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b

Rabs (f x1 - phi_sequence RinvN pr1 n x1) + Rabs l * Rabs (g x1 - phi_sequence RinvN pr2 n x1) <= psi1 n x1 + Rabs l * psi2 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b

Rabs (f x1 - phi_sequence RinvN pr1 n x1) <= psi1 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b
Rabs l * Rabs (g x1 - phi_sequence RinvN pr2 n x1) <= Rabs l * psi2 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b
H13:forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t
H14:Rabs (RiemannInt_SF (psi1 n)) < RinvN n

a <= x1 <= b
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b
Rabs l * Rabs (g x1 - phi_sequence RinvN pr2 n x1) <= Rabs l * psi2 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x2 : R => f x2 + l * g x2) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
x1:R
H12:a < x1 < b

Rabs l * Rabs (g x1 - phi_sequence RinvN pr2 n x1) <= Rabs l * psi2 n x1
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

RiemannInt_SF {| fe := fun x1 : R => psi3 n x1 + 1 * {| fe := fun x2 : R => psi1 n x2 + Rabs l * psi2 n x2; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} x1; pre := StepFun_P28 1 (psi3 n) {| fe := fun x1 : R => psi1 n x1 + Rabs l * psi2 n x1; pre := StepFun_P28 (Rabs l) (psi1 n) (psi2 n) |} |} < 3 * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

RiemannInt_SF (psi3 n) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
RiemannInt_SF (psi1 n) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
Rabs l * RiemannInt_SF (psi2 n) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

RiemannInt_SF (psi1 n) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
Rabs l * RiemannInt_SF (psi2 n) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

Rabs l * RiemannInt_SF (psi2 n) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

0 < / Rabs l
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
/ Rabs l * (Rabs l * RiemannInt_SF (psi2 n)) < / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

/ Rabs l * (Rabs l * RiemannInt_SF (psi2 n)) < / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

1 * RiemannInt_SF (psi2 n) < / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
Rabs l <> 0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

RiemannInt_SF (psi2 n) < eps / (5 * Rabs l)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
eps / (5 * Rabs l) = / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
Rabs l <> 0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

eps / (5 * Rabs l) = / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b
Rabs l <> 0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
psi1:nat -> StepFun a b
H7:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun a b
H8:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (g t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a b
H9:forall n0 : nat, (forall t : R, a <= t <= b -> Rabs (f t + l * g t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
H10:Rmin a b = a
H11:Rmax a b = b

Rabs l <> 0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x0) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / 5
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

0 < / Rabs l
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
/ Rabs l * (Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)) < / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

/ Rabs l * (Rabs l * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x)) < / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

1 * Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l <> 0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x) < eps / (5 * Rabs l)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
eps / (5 * Rabs l) = / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l <> 0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

eps / (5 * Rabs l) = / Rabs l * (eps / 5)
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
Rabs l <> 0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

Rabs l <> 0
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat
3 * (eps / 5) + eps / 5 + eps / 5 = eps
f, g:R -> R
a, b, l:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
pr3:Riemann_integrable (fun x1 : R => f x1 + l * g x1) a b
H:a <= b
H0:l <> 0
eps:R
H1:eps > 0
x0, x:R
N0:nat
H3:forall n0 : nat, (n0 >= N0)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x0) < eps / 5
N1, N2:nat
H6:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x) < eps / (5 * Rabs l)
N3:nat
N:=Nat.max (Nat.max N0 N1) (Nat.max N2 N3):nat
H4:forall n0 : nat, (n0 >= N1)%nat -> RinvN n0 < eps / 5
H5:forall n0 : nat, (n0 >= N3)%nat -> RinvN n0 < eps / (5 * Rabs l)
n:nat
H2:(n >= N)%nat

3 * (eps / 5) + eps / 5 + eps / 5 = eps
apply Rmult_eq_reg_l with 5; [ unfold Rdiv; do 2 rewrite Rmult_plus_distr_l; do 3 rewrite (Rmult_comm 5); repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. Qed.

forall (f g : R -> R) (a b l : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable g a b) (pr3 : Riemann_integrable (fun x : R => f x + l * g x) a b), RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2

forall (f g : R -> R) (a b l : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable g a b) (pr3 : Riemann_integrable (fun x : R => f x + l * g x) a b), RiemannInt pr3 = RiemannInt pr1 + l * RiemannInt pr2
intros; destruct (Rle_dec a b) as [Hle|Hnle]; [ apply RiemannInt_P12; assumption | assert (H : b <= a); [ auto with real | replace (RiemannInt pr3) with (- RiemannInt (RiemannInt_P1 pr3)); [ idtac | symmetry ; apply RiemannInt_P8 ]; replace (RiemannInt pr2) with (- RiemannInt (RiemannInt_P1 pr2)); [ idtac | symmetry ; apply RiemannInt_P8 ]; replace (RiemannInt pr1) with (- RiemannInt (RiemannInt_P1 pr1)); [ idtac | symmetry ; apply RiemannInt_P8 ]; rewrite (RiemannInt_P12 (RiemannInt_P1 pr1) (RiemannInt_P1 pr2) (RiemannInt_P1 pr3) H); ring ] ]. Qed.

forall a b c : R, Riemann_integrable (fct_cte c) a b

forall a b c : R, Riemann_integrable (fct_cte c) a b
unfold Riemann_integrable; intros; split with (mkStepFun (StepFun_P4 a b c)); split with (mkStepFun (StepFun_P4 a b 0)); split; [ intros; simpl; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; unfold fct_cte; right; reflexivity | rewrite StepFun_P18; rewrite Rmult_0_l; rewrite Rabs_R0; apply (cond_pos eps) ]. Qed.

forall (a b c : R) (pr : Riemann_integrable (fct_cte c) a b), RiemannInt pr = c * (b - a)

forall (a b c : R) (pr : Riemann_integrable (fct_cte c) a b), RiemannInt pr = c * (b - a)
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x

Un_cv ?Un x
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
Un_cv ?Un (c * (b - a))
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x

Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) (c * (b - a))
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R

exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) (c * (b - a))
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n

Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) (c * (b - a))
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b

Un_cv (fun x0 : nat => RinvN x0) 0
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b
forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) (c * (b - a))
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b

forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) (c * (b - a))
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b
n:nat

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2 n t) <= psi2 n t
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b
n:nat
Rabs (RiemannInt_SF (psi2 n)) < RinvN n
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) (c * (b - a))
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b
n:nat

Rabs (RiemannInt_SF (psi2 n)) < RinvN n
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) (c * (b - a))
a, b, c:R
pr:Riemann_integrable (fct_cte c) a b
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr N)) x
phi1:=fun N : nat => phi_sequence RinvN pr N:nat -> StepFun a b
f:=fct_cte c:R -> R
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun _ : nat => {| fe := fct_cte c; pre := StepFun_P4 a b c |}:nat -> StepFun a b
psi2:=fun _ : nat => {| fe := fct_cte 0; pre := StepFun_P4 a b 0 |}:nat -> StepFun a b

Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) (c * (b - a))
unfold Un_cv; intros; split with 0%nat; intros; unfold R_dist; unfold phi2; rewrite StepFun_P18; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply H. Qed.

forall (f : R -> R) (a b : R), Riemann_integrable f a b -> Riemann_integrable (fun x : R => Rabs (f x)) a b

forall (f : R -> R) (a b : R), Riemann_integrable f a b -> Riemann_integrable (fun x : R => Rabs (f x)) a b
unfold Riemann_integrable; intro f; intros; elim (X eps); clear X; intros phi [psi [H H0]]; split with (mkStepFun (StepFun_P32 phi)); split with psi; split; try assumption; intros; simpl; apply Rle_trans with (Rabs (f t - phi t)); [ apply Rabs_triang_inv2 | apply H; assumption ]. Qed.

forall (Un Vn : nat -> R) (l1 l2 : R), (forall n : nat, Un n <= Vn n) -> Un_cv Un l1 -> Un_cv Vn l2 -> l1 <= l2

forall (Un Vn : nat -> R) (l1 l2 : R), (forall n : nat, Un n <= Vn n) -> Un_cv Un l1 -> Un_cv Vn l2 -> l1 <= l2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
H0:Un_cv Un l1
H1:Un_cv Vn l2
Hle:l1 <= l2

l1 <= l2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
H0:Un_cv Un l1
H1:Un_cv Vn l2
Hnle:~ l1 <= l2
l1 <= l2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
H0:Un_cv Un l1
H1:Un_cv Vn l2
Hnle:~ l1 <= l2

l1 <= l2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
H0:Un_cv Un l1
H1:Un_cv Vn l2
Hnle:~ l1 <= l2

l2 < l1
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
H0:Un_cv Un l1
H1:Un_cv Vn l2
Hnle:~ l1 <= l2
H2:l2 < l1
l1 <= l2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
H0:Un_cv Un l1
H1:Un_cv Vn l2
Hnle:~ l1 <= l2
H2:l2 < l1

l1 <= l2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
H0:Un_cv Un l1
H1:Un_cv Vn l2
Hnle:~ l1 <= l2
H2:l2 < l1

0 < (l1 - l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
H0:Un_cv Un l1
H1:Un_cv Vn l2
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
l1 <= l2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
H0:Un_cv Un l1
H1:Un_cv Vn l2
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2

l1 <= l2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

Vn N < Un N -> l1 <= l2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
Vn N < Un N
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

Vn N < Un N
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

Vn N < (l1 + l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 + l2) / 2 < Un N
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

- l2 + Vn N < (l1 - l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 - l2) / 2 = - l2 + (l1 + l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 + l2) / 2 < Un N
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

Vn N + - l2 <= Rabs (Vn N - l2)
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
Rabs (Vn N - l2) < (l1 - l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 - l2) / 2 = - l2 + (l1 + l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 + l2) / 2 < Un N
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

Rabs (Vn N - l2) < (l1 - l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 - l2) / 2 = - l2 + (l1 + l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 + l2) / 2 < Un N
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

(l1 - l2) / 2 = - l2 + (l1 + l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 + l2) / 2 < Un N
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

(l1 + l2) / 2 < Un N
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

l1 + - Un N < (l1 - l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 - l2) / 2 = l1 + - ((l1 + l2) / 2)
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

l1 + - Un N <= Rabs (Un N - l1)
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
Rabs (Un N - l1) < (l1 - l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 - l2) / 2 = l1 + - ((l1 + l2) / 2)
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

Rabs (Un N - l1) < (l1 - l2) / 2
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat
(l1 - l2) / 2 = l1 + - ((l1 + l2) / 2)
Un, Vn:nat -> R
l1, l2:R
H:forall n : nat, Un n <= Vn n
Hnle:~ l1 <= l2
H2:l2 < l1
H3:0 < (l1 - l2) / 2
x:nat
H0:forall n : nat, (n >= x)%nat -> Rabs (Un n - l1) < (l1 - l2) / 2
x0:nat
H1:forall n : nat, (n >= x0)%nat -> Rabs (Vn n - l2) < (l1 - l2) / 2
N:=Nat.max x x0:nat

(l1 - l2) / 2 = l1 + - ((l1 + l2) / 2)
apply Rmult_eq_reg_l with 2; [ unfold Rdiv; do 2 rewrite (Rmult_comm 2); rewrite (Rmult_plus_distr_r l1 (- ((l1 + l2) * / 2)) 2); rewrite <- Ropp_mult_distr_l_reverse; repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym; [ ring | discrR ] | discrR ]. Qed.

forall (f : R -> R) (a b : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable (fun x : R => Rabs (f x)) a b), a <= b -> Rabs (RiemannInt pr1) <= RiemannInt pr2

forall (f : R -> R) (a b : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable (fun x : R => Rabs (f x)) a b), a <= b -> Rabs (RiemannInt pr1) <= RiemannInt pr2
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b

forall n : nat, Rabs (RiemannInt_SF (phi1 n)) <= RiemannInt_SF (phi2 n)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
Un_cv (fun N : nat => Rabs (RiemannInt_SF (phi1 N))) (Rabs x0)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b

Un_cv (fun N : nat => Rabs (RiemannInt_SF (phi1 N))) (Rabs x0)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b

continuity_pt Rabs x0
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b

Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b

exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n

Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n

exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H1:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n

exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H1:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H1:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H1:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H1:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
psi2:nat -> StepFun a b
n:nat
H1:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi2 n t
H2:Rabs (RiemannInt_SF (psi2 n)) < RinvN n

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H1:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (Rabs (f t0) - phi3 n0 t0) <= psi3 n0 t0) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
psi2:nat -> StepFun a b
n:nat
H1:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n t0) <= psi2 n t0
H2:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H3:Rmin a b <= t <= Rmax a b

Rabs (Rabs (f t) - Rabs (phi1 n t)) <= Rabs (f t - phi1 n t)
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (Rabs (f t0) - phi3 n0 t0) <= psi3 n0 t0) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
psi2:nat -> StepFun a b
n:nat
H1:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n t0) <= psi2 n t0
H2:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H3:Rmin a b <= t <= Rmax a b
Rabs (f t - phi1 n t) <= psi2 n t
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H1:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (Rabs (f t0) - phi3 n0 t0) <= psi3 n0 t0) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
psi2:nat -> StepFun a b
n:nat
H1:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n t0) <= psi2 n t0
H2:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H3:Rmin a b <= t <= Rmax a b

Rabs (f t - phi1 n t) <= psi2 n t
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H1:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
f:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable (fun x1 : R => Rabs (f x1)) a b
H:a <= b
x0:R
phi1:=phi_sequence RinvN pr1:nat -> StepFun a b
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi2:=fun N : nat => {| fe := fun x1 : R => Rabs (phi1 N x1); pre := StepFun_P32 (phi1 N) |}:nat -> StepFun a b
phi3:=phi_sequence RinvN pr2:nat -> StepFun a b
H0:exists psi3 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H1:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (Rabs (f t) - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

Un_cv (fun N : nat => RiemannInt_SF (phi2 N)) x
elim H0; clear H0; intros psi3 H0; elim H1; clear H1; intros psi2 H1; apply RiemannInt_P11 with (fun x:R => Rabs (f x)) RinvN phi3 psi3 psi2; try assumption; apply RinvN_cv. Qed.

forall (f g : R -> R) (a b : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable g a b), a <= b -> (forall x : R, a < x < b -> f x = g x) -> RiemannInt pr1 = RiemannInt pr2

forall (f g : R -> R) (a b : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable g a b), a <= b -> (forall x : R, a < x < b -> f x = g x) -> RiemannInt pr1 = RiemannInt pr2
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x

Un_cv ?Un x0
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
Un_cv ?Un x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x

Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b

exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n

Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b

Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R

Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R

(forall N : nat, IsStepFun (phi2_aux N) a b) -> Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b

Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b

exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
H2:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
H2:exists psi2 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

Un_cv (fun N : nat => RiemannInt_SF (phi1 N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

Un_cv (fun x1 : nat => RinvN x1) 0
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2_m n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2_m n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n

forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi2_m n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Heqb:t = b

Rabs (f t - f a) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Hneqb:t <> b
Rabs (f t - f a) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b
Rabs (f t - f b) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Heqb:t = b

0 <= Rabs (g t - phi2 n t)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Heqb:t = b
Rabs (g t - phi2 n t) <= psi2 n a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Hneqb:t <> b
Rabs (f t - f a) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b
Rabs (f t - f b) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Heqb:t = b

Rabs (g t - phi2 n t) <= psi2 n a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Hneqb:t <> b
Rabs (f t - f a) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b
Rabs (f t - f b) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Hneqb:t <> b

Rabs (f t - f a) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b
Rabs (f t - f b) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Hneqb:t <> b

0 <= Rabs (g t - phi2 n t)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Hneqb:t <> b
Rabs (g t - phi2 n t) <= psi2 n a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b
Rabs (f t - f b) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Heqa:t = a
Hneqb:t <> b

Rabs (g t - phi2 n t) <= psi2 n a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b
Rabs (f t - f b) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b

Rabs (f t - f b) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b

0 <= Rabs (g t - phi2 n t)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b
Rabs (g t - phi2 n t) <= psi2 n b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Heqb:t = b

Rabs (g t - phi2 n t) <= psi2 n b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b

Rabs (f t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b

Rabs (g t - phi2 n t) <= psi2 n t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b
g t = f t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
H5:Rmin a b <= t <= Rmax a b
Hneqa:t <> a
Hneqb:t <> b

g t = f t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:Rmin a b <= t
H6:t <= Rmax a b

a < t < b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:Rmin a b <= t
H6:t <= Rmax a b

Rmin a b = a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:Rmin a b <= t
H6:t <= Rmax a b
H7:Rmin a b = a
a < t < b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:Rmin a b <= t
H6:t <= Rmax a b
H7:Rmin a b = a

a < t < b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:Rmin a b <= t
H6:t <= Rmax a b
H7:Rmin a b = a

Rmax a b = b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:Rmin a b <= t
H6:t <= Rmax a b
H7:Rmin a b = a
H8:Rmax a b = b
a < t < b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:Rmin a b <= t
H6:t <= Rmax a b
H7:Rmin a b = a
H8:Rmax a b = b

a < t < b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:a <= t
H6:t <= b
H7:Rmin a b = a
H8:Rmax a b = b

a < t
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:a <= t
H6:t <= b
H7:Rmin a b = a
H8:Rmax a b = b
t < b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 n0 t0) <= psi1 n0 t0) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n0 : nat, (forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n0 t0) <= psi2 n0 t0) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
n:nat
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (g t0 - phi2 n t0) <= psi2 n t0
H4:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
t:R
Hneqa:t <> a
Hneqb:t <> b
H5:a <= t
H6:t <= b
H7:Rmin a b = a
H8:Rmax a b = b

t < b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

(forall N : nat, RiemannInt_SF (phi2_m N) = RiemannInt_SF (phi2 N)) -> Un_cv (fun N : nat => RiemannInt_SF (phi2_m N)) x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
forall N : nat, RiemannInt_SF (phi2_m N) = RiemannInt_SF (phi2 N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
X:forall N : nat, IsStepFun (phi2_aux N) a b
phi2_m:=fun N : nat => {| fe := phi2_aux N; pre := X N |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

forall N : nat, RiemannInt_SF (phi2_m N) = RiemannInt_SF (phi2 N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat

RiemannInt_SF (phi2_m N) <= RiemannInt_SF (phi2 N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
RiemannInt_SF (phi2 N) <= RiemannInt_SF (phi2_m N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat

forall x1 : R, a < x1 < b -> phi2_m N x1 <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
RiemannInt_SF (phi2 N) <= RiemannInt_SF (phi2_m N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Heqa:x1 = a
Heqb:x1 = b

f a <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Heqa:x1 = a
Hneqb:x1 <> b
f a <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
Heqb:x1 = b
f b <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
Hneqb:x1 <> b
phi2 N x1 <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
RiemannInt_SF (phi2 N) <= RiemannInt_SF (phi2_m N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Heqa:x1 = a
Hneqb:x1 <> b

f a <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
Heqb:x1 = b
f b <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
Hneqb:x1 <> b
phi2 N x1 <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
RiemannInt_SF (phi2 N) <= RiemannInt_SF (phi2_m N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
Heqb:x1 = b

f b <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
Hneqb:x1 <> b
phi2 N x1 <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
RiemannInt_SF (phi2 N) <= RiemannInt_SF (phi2_m N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
Hneqb:x1 <> b

phi2 N x1 <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
RiemannInt_SF (phi2 N) <= RiemannInt_SF (phi2_m N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat

RiemannInt_SF (phi2 N) <= RiemannInt_SF (phi2_m N)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat

forall x1 : R, a < x1 < b -> phi2 N x1 <= phi2_m N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
H3:a < a < b

phi2 N a <= f a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
phi2 N x1 <= (if Req_EM_T x1 b then f b else phi2 N x1)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a

phi2 N x1 <= (if Req_EM_T x1 b then f b else phi2 N x1)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
Hneqa:b <> a
H3:a < b < b

phi2 N b <= f b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
Hneqb:x1 <> b
phi2 N x1 <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
X:forall N0 : nat, IsStepFun (phi2_aux N0) a b
phi2_m:=fun N0 : nat => {| fe := phi2_aux N0; pre := X N0 |}:nat -> StepFun a b
psi2:nat -> StepFun a b
H2:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (g t - phi2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
N:nat
x1:R
H3:a < x1 < b
Hneqa:x1 <> a
Hneqb:x1 <> b

phi2 N x1 <= phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R
forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x
phi1:=fun N : nat => phi_sequence RinvN pr1 N:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N : nat => phi_sequence RinvN pr2 N:nat -> StepFun a b
phi2_aux:=fun (N : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N x1:nat -> R -> R

forall N : nat, IsStepFun (phi2_aux N) a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x1 : R, a < x1 < b -> f x1 = g x1
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x1 : R) => if Req_EM_T x1 a then f a else if Req_EM_T x1 b then f b else phi2 N0 x1:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i : nat, (i < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i) (pos_Rl l (S i))) (pos_Rl lf i)

forall i : nat, (i < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2_aux N) (open_interval (pos_Rl l i) (pos_Rl l (S i))) (pos_Rl lf i)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)

a <= pos_Rl l i
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)

Rmin a b <= pos_Rl l i
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
Rmin a b = a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l

ordered_Rlist l
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l
(0 <= i)%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l
(i < Rlength l)%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
Rmin a b = a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l

(0 <= i)%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l
(i < Rlength l)%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
Rmin a b = a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l

(i < Rlength l)%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
Rmin a b = a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l

(0 < Rlength l)%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
Rmin a b = a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)

Rmin a b = a
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i

phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i

pos_Rl l (S i) <= b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i

pos_Rl l (S i) <= Rmax a b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
Rmax a b = b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l

ordered_Rlist l
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l
(S i <= Init.Nat.pred (Rlength l))%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l
(Init.Nat.pred (Rlength l) < Rlength l)%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
Rmax a b = b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l

(S i <= Init.Nat.pred (Rlength l))%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l
(Init.Nat.pred (Rlength l) < Rlength l)%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
Rmax a b = b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:ordered_Rlist l -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l)%nat -> pos_Rl l i0 <= pos_Rl l j) -> ordered_Rlist l

(Init.Nat.pred (Rlength l) < Rlength l)%nat
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
Rmax a b = b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i

Rmax a b = b
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H7:pos_Rl l i < x1 < pos_Rl l (S i)
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b

phi2_aux N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Heq:x1 = a
Heq':x1 = b

f a = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Heq:x1 = a
Hneq':x1 <> b
f a = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Hneq:x1 <> a
Heq':x1 = b
f b = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Hneq:x1 <> a
Hneq':x1 <> b
phi2 N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Heq:x1 = a
Hneq':x1 <> b

f a = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Hneq:x1 <> a
Heq':x1 = b
f b = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Hneq:x1 <> a
Hneq':x1 <> b
phi2 N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Hneq:x1 <> a
Heq':x1 = b

f b = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Hneq:x1 <> a
Hneq':x1 <> b
phi2 N x1 = phi2 N x1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x2 : R, a < x2 < b -> f x2 = g x2
x0:R
HUn_cv0:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr1 N0)) x0
x:R
HUn_cv:Un_cv (fun N0 : nat => RiemannInt_SF (phi_sequence RinvN pr2 N0)) x
phi1:=fun N0 : nat => phi_sequence RinvN pr1 N0:nat -> StepFun a b
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
phi2:=fun N0 : nat => phi_sequence RinvN pr2 N0:nat -> StepFun a b
phi2_aux:=fun (N0 : nat) (x2 : R) => if Req_EM_T x2 a then f a else if Req_EM_T x2 b then f b else phi2 N0 x2:nat -> R -> R
N:nat
l, lf:Rlist
H3:ordered_Rlist l
H5:pos_Rl l 0 = Rmin a b
H4:pos_Rl l (Init.Nat.pred (Rlength l)) = Rmax a b
H6:Rlength l = S (Rlength lf)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l))%nat -> constant_D_eq (phi2 N) (open_interval (pos_Rl l i0) (pos_Rl l (S i0))) (pos_Rl lf i0)
i:nat
H2:(i < Init.Nat.pred (Rlength l))%nat
H9:forall x2 : R, pos_Rl l i < x2 < pos_Rl l (S i) -> phi2 N x2 = pos_Rl lf i
x1:R
H10:a <= pos_Rl l i
H11:pos_Rl l (S i) <= b
H7:pos_Rl l i < x1
H12:x1 < pos_Rl l (S i)
Hneq:x1 <> a
Hneq':x1 <> b

phi2 N x1 = phi2 N x1
reflexivity. Qed.

forall (f g : R -> R) (a b : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable g a b), a <= b -> (forall x : R, a < x < b -> f x <= g x) -> RiemannInt pr1 <= RiemannInt pr2

forall (f g : R -> R) (a b : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable g a b), a <= b -> (forall x : R, a < x < b -> f x <= g x) -> RiemannInt pr1 <= RiemannInt pr2
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x

0 <= Rabs (RiemannInt (RiemannInt_P10 (-1) pr2 pr1))
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x
Rabs (RiemannInt (RiemannInt_P10 (-1) pr2 pr1)) <= RiemannInt pr2 + - RiemannInt pr1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x

Rabs (RiemannInt (RiemannInt_P10 (-1) pr2 pr1)) <= RiemannInt pr2 + - RiemannInt pr1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x

Rabs (RiemannInt (RiemannInt_P10 (-1) pr2 pr1)) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1))
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1)) = RiemannInt pr2 + - RiemannInt pr1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1)) = RiemannInt pr2 + - RiemannInt pr1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) pr2 pr1)) = RiemannInt (RiemannInt_P10 (-1) pr2 pr1)
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x
RiemannInt (RiemannInt_P10 (-1) pr2 pr1) = RiemannInt pr2 + - RiemannInt pr1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x

forall x : R, a < x < b -> Rabs (g x + -1 * f x) = g x + -1 * f x
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x
RiemannInt (RiemannInt_P10 (-1) pr2 pr1) = RiemannInt pr2 + - RiemannInt pr1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x0 : R, a < x0 < b -> f x0 <= g x0
x:R
H1:a < x < b

g x + -1 * f x >= 0
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x
RiemannInt (RiemannInt_P10 (-1) pr2 pr1) = RiemannInt pr2 + - RiemannInt pr1
f, g:R -> R
a, b:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable g a b
H:a <= b
H0:forall x : R, a < x < b -> f x <= g x

RiemannInt (RiemannInt_P10 (-1) pr2 pr1) = RiemannInt pr2 + - RiemannInt pr1
rewrite (RiemannInt_P12 pr2 pr1 (RiemannInt_P10 (-1) pr2 pr1)); [ ring | assumption ]. Qed.

forall (f : R -> R) (a b : R), a <= b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> forall x : R, a <= x -> x <= b -> Riemann_integrable f a x

forall (f : R -> R) (a b : R), a <= b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> forall x : R, a <= x -> x <= b -> Riemann_integrable f a x
intros; apply continuity_implies_RiemannInt; [ assumption | intros; apply H0; elim H3; intros; split; assumption || apply Rle_trans with x; assumption ]. Qed. Definition primitive (f:R -> R) (a b:R) (h:a <= b) (pr:forall x:R, a <= x -> x <= b -> Riemann_integrable f a x) (x:R) : R := match Rle_dec a x with | left r => match Rle_dec x b with | left r0 => RiemannInt (pr x r r0) | right _ => f b * (x - b) + RiemannInt (pr b h (Rle_refl b)) end | right _ => f a * (x - a) end.

forall (f : R -> R) (a b : R) (h : a <= b) (pr : forall x : R, a <= x -> x <= b -> Riemann_integrable f a x) (pr0 : Riemann_integrable f a b), RiemannInt pr0 = primitive h pr b - primitive h pr a

forall (f : R -> R) (a b : R) (h : a <= b) (pr : forall x : R, a <= x -> x <= b -> Riemann_integrable f a x) (pr0 : Riemann_integrable f a b), RiemannInt pr0 = primitive h pr b - primitive h pr a
f:R -> R
a, b:R
h:a <= b
pr:forall x : R, a <= x -> x <= b -> Riemann_integrable f a x
pr0:Riemann_integrable f a b

RiemannInt pr0 = primitive h pr b - 0
f:R -> R
a, b:R
h:a <= b
pr:forall x : R, a <= x -> x <= b -> Riemann_integrable f a x
pr0:Riemann_integrable f a b
0 = primitive h pr a
f:R -> R
a, b:R
h:a <= b
pr:forall x : R, a <= x -> x <= b -> Riemann_integrable f a x
pr0:Riemann_integrable f a b

primitive h pr b = primitive h pr b - 0
f:R -> R
a, b:R
h:a <= b
pr:forall x : R, a <= x -> x <= b -> Riemann_integrable f a x
pr0:Riemann_integrable f a b
primitive h pr b = RiemannInt pr0
f:R -> R
a, b:R
h:a <= b
pr:forall x : R, a <= x -> x <= b -> Riemann_integrable f a x
pr0:Riemann_integrable f a b
0 = primitive h pr a
f:R -> R
a, b:R
h:a <= b
pr:forall x : R, a <= x -> x <= b -> Riemann_integrable f a x
pr0:Riemann_integrable f a b

primitive h pr b = RiemannInt pr0
f:R -> R
a, b:R
h:a <= b
pr:forall x : R, a <= x -> x <= b -> Riemann_integrable f a x
pr0:Riemann_integrable f a b
0 = primitive h pr a
f:R -> R
a, b:R
h:a <= b
pr:forall x : R, a <= x -> x <= b -> Riemann_integrable f a x
pr0:Riemann_integrable f a b

0 = primitive h pr a
symmetry ; unfold primitive; destruct (Rle_dec a a) as [Hle|[]]; destruct (Rle_dec a b) as [Hle'|Hnle']; [ apply RiemannInt_P9 | elim Hnle'; assumption | right; reflexivity | right; reflexivity ]. Qed.

forall (f : R -> R) (a b c : R), a <= b -> b <= c -> Riemann_integrable f a b -> Riemann_integrable f b c -> Riemann_integrable f a c

forall (f : R -> R) (a b c : R), a <= b -> b <= c -> Riemann_integrable f a b -> Riemann_integrable f b c -> Riemann_integrable f a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun b c & {psi : StepFun b c | (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal

{phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun b c & {psi : StepFun b c | (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal

0 < eps / 2
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun b c & {psi : StepFun b c | (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
H:0 < eps / 2
{phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
X:forall eps0 : posreal, {phi : StepFun a b & {psi : StepFun a b | (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
X0:forall eps0 : posreal, {phi : StepFun b c & {psi : StepFun b c | (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps0}}
eps:posreal
H:0 < eps / 2

{phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}

{phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R

{phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R

{phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R

IsStepFun phi3 a c -> {phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c

IsStepFun psi3 a b -> {phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b

IsStepFun psi3 b c -> {phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c

IsStepFun psi3 a c -> {phi : StepFun a c & {psi : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi t) <= psi t) /\ Rabs (RiemannInt_SF psi) < eps}}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t

Rabs (f t - phi1 t) <= psi1 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0
H4:Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}

Rmin a b <= t <= Rmax a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0
H4:Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}

a <= t <= Rmax a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0
H4:Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
a = Rmin a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0
H4:Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}

a <= t <= b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0
H4:Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
b = Rmax a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0
H4:Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
a = Rmin a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0
H4:Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}

b = Rmax a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0
H4:Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
a = Rmin a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
r0:a <= t
H3:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0
H4:Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}

a = Rmin a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t

Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t

Rmin a c <= t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t
Rmin a c = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
r:t <= b
Hnle':~ a <= t

Rmin a c = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t

Rabs (f t - phi2 t) <= psi2 t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}

Rmin b c <= t <= Rmax b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}

Rmin b c <= t <= Rmax a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
Rmax a c = Rmax b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
H5:Rmin a c <= t
H6:t <= Rmax a c

Rmin b c <= t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
Rmax a c = Rmax b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
H5:Rmin a c <= t
H6:t <= Rmax a c

b <= t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
H5:Rmin a c <= t
H6:t <= Rmax a c
b = Rmin b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
Rmax a c = Rmax b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
H5:Rmin a c <= t
H6:t <= Rmax a c

b = Rmin b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
Rmax a c = Rmax b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
r:a <= t
H3:forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0
H4:Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}

Rmax a c = Rmax b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t

Rabs (f t - 0) <= 0
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t

Rmin a c <= t
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t
Rmin a c = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi1 t0) <= psi1 t0) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t0 : R, Rmin b c <= t0 <= Rmax b c -> Rabs (f t0 - phi2 t0) <= psi2 t0) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
t:R
H0:Rmin a c <= t <= Rmax a c
Hnle:~ t <= b
Hnle':~ a <= t

Rmin a c = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

Rabs (RiemannInt_SF {| fe := psi3; pre := X2 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

Rabs (RiemannInt_SF {| fe := psi3; pre := X0 |} + RiemannInt_SF {| fe := psi3; pre := X1 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

Rabs (RiemannInt_SF {| fe := psi3; pre := X0 |} + RiemannInt_SF {| fe := psi3; pre := X1 |}) <= Rabs (RiemannInt_SF {| fe := psi3; pre := X0 |}) + Rabs (RiemannInt_SF {| fe := psi3; pre := X1 |})
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF {| fe := psi3; pre := X0 |}) + Rabs (RiemannInt_SF {| fe := psi3; pre := X1 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

Rabs (RiemannInt_SF {| fe := psi3; pre := X0 |}) + Rabs (RiemannInt_SF {| fe := psi3; pre := X1 |}) < eps
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

Rabs (RiemannInt_SF psi1) + Rabs (RiemannInt_SF {| fe := psi3; pre := X1 |}) < eps / 2 + eps / 2
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

Rabs (RiemannInt_SF psi1) + Rabs (RiemannInt_SF psi2) < eps / 2 + eps / 2
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi2 = RiemannInt_SF {| fe := psi3; pre := X1 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

Rabs (RiemannInt_SF psi1) < eps / 2
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
Rabs (RiemannInt_SF psi2) < eps / 2
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi2 = RiemannInt_SF {| fe := psi3; pre := X1 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

Rabs (RiemannInt_SF psi2) < eps / 2
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi2 = RiemannInt_SF {| fe := psi3; pre := X1 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

RiemannInt_SF psi2 = RiemannInt_SF {| fe := psi3; pre := X1 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

RiemannInt_SF psi2 <= RiemannInt_SF {| fe := psi3; pre := X1 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF {| fe := psi3; pre := X1 |} <= RiemannInt_SF psi2
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

forall x : R, b < x < c -> psi2 x <= {| fe := psi3; pre := X1 |} x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF {| fe := psi3; pre := X1 |} <= RiemannInt_SF psi2
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

RiemannInt_SF {| fe := psi3; pre := X1 |} <= RiemannInt_SF psi2
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

forall x : R, b < x < c -> {| fe := psi3; pre := X1 |} x <= psi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

RiemannInt_SF psi1 = RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

RiemannInt_SF psi1 <= RiemannInt_SF {| fe := psi3; pre := X0 |}
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF {| fe := psi3; pre := X0 |} <= RiemannInt_SF psi1
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

forall x : R, a < x < b -> psi1 x <= {| fe := psi3; pre := X0 |} x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c
RiemannInt_SF {| fe := psi3; pre := X0 |} <= RiemannInt_SF psi1
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

RiemannInt_SF {| fe := psi3; pre := X0 |} <= RiemannInt_SF psi1
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
X2:IsStepFun psi3 a c

forall x : R, a < x < b -> {| fe := psi3; pre := X0 |} x <= psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c
IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
X1:IsStepFun psi3 b c

IsStepFun psi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b

IsStepFun psi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i : nat, (i < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i) (pos_Rl l1 (S i))) (pos_Rl lf1 i)

forall i : nat, (i < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi3 (open_interval (pos_Rl l1 i) (pos_Rl l1 (S i))) (pos_Rl lf1 i)
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

b < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

b <= pos_Rl l1 i
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

Rmin b c <= pos_Rl l1 i
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmin b c = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(0 <= i)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1
(i < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmin b c = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(i < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmin b c = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

Rmin b c = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
X0:IsStepFun psi3 a b
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x

(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c

IsStepFun psi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i : nat, (i < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i) (pos_Rl l1 (S i))) (pos_Rl lf1 i)

forall i : nat, (i < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi3 (open_interval (pos_Rl l1 i) (pos_Rl l1 (S i))) (pos_Rl lf1 i)
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

x <= b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

x <= pos_Rl l1 (S i)
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 (S i) <= b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

pos_Rl l1 (S i) <= b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

pos_Rl l1 (S i) <= Rmax a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmax a b = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(Init.Nat.pred (Rlength l1) < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmax a b = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

Rmax a b = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

a <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

a <= pos_Rl l1 i
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

Rmin a b <= pos_Rl l1 i
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
Rmin a b = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(0 <= i)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1
(i < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
Rmin a b = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(i < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
Rmin a b = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

Rmin a b = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
X:IsStepFun phi3 a c
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq psi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> psi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x

(if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0) = psi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R

IsStepFun phi3 a c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R

IsStepFun phi3 a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i : nat, (i < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i) (pos_Rl l1 (S i))) (pos_Rl lf1 i)

forall i : nat, (i < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi3 (open_interval (pos_Rl l1 i) (pos_Rl l1 (S i))) (pos_Rl lf1 i)
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

x <= b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

x <= pos_Rl l1 (S i)
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 (S i) <= b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

pos_Rl l1 (S i) <= b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

pos_Rl l1 (S i) <= Rmax a b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmax a b = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(Init.Nat.pred (Rlength l1) < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmax a b = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

Rmax a b = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

a <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

a <= pos_Rl l1 i
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

Rmin a b <= pos_Rl l1 i
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
Rmin a b = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(0 <= i)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1
(i < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
Rmin a b = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H12:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(i < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
Rmin a b = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

Rmin a b = a
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b

pos_Rl l1 i <= x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x
phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin a b
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax a b
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi1 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi1 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:x <= b
H11:a <= x

phi3 x = phi1 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R

IsStepFun phi3 b c
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then phi1 x else phi2 x else 0:R -> R
psi3:=fun x : R => if Rle_dec a x then if Rle_dec x b then psi1 x else psi2 x else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i : nat, (i < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i) (pos_Rl l1 (S i))) (pos_Rl lf1 i)

forall i : nat, (i < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi3 (open_interval (pos_Rl l1 i) (pos_Rl l1 (S i))) (pos_Rl lf1 i)
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

b < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
phi3 x = phi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

b <= pos_Rl l1 i
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
phi3 x = phi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

Rmin b c <= pos_Rl l1 i
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmin b c = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
phi3 x = phi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(0 <= i)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1
(i < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmin b c = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
phi3 x = phi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:ordered_Rlist l1 -> forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j
H11:(forall i0 j : nat, (i0 <= j)%nat -> (j < Rlength l1)%nat -> pos_Rl l1 i0 <= pos_Rl l1 j) -> ordered_Rlist l1

(i < Rlength l1)%nat
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
Rmin b c = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
phi3 x = phi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

Rmin b c = b
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
phi3 x = phi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)

pos_Rl l1 i < x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x
phi3 x = phi2 x
f:R -> R
a, b, c:R
Hyp1:a <= b
Hyp2:b <= c
eps:posreal
H:0 < eps / 2
phi1, psi1:StepFun a b
H1:(forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 t) /\ Rabs (RiemannInt_SF psi1) < {| pos := eps / 2; cond_pos := H |}
phi2, psi2:StepFun b c
H2:(forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 t) /\ Rabs (RiemannInt_SF psi2) < {| pos := eps / 2; cond_pos := H |}
phi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then phi1 x0 else phi2 x0 else 0:R -> R
psi3:=fun x0 : R => if Rle_dec a x0 then if Rle_dec x0 b then psi1 x0 else psi2 x0 else 0:R -> R
l1, lf1:Rlist
H0:ordered_Rlist l1
H5:pos_Rl l1 0 = Rmin b c
H4:pos_Rl l1 (Init.Nat.pred (Rlength l1)) = Rmax b c
H6:Rlength l1 = S (Rlength lf1)
H8:forall i0 : nat, (i0 < Init.Nat.pred (Rlength l1))%nat -> constant_D_eq phi2 (open_interval (pos_Rl l1 i0) (pos_Rl l1 (S i0))) (pos_Rl lf1 i0)
i:nat
H3:(i < Init.Nat.pred (Rlength l1))%nat
H9:forall x0 : R, pos_Rl l1 i < x0 < pos_Rl l1 (S i) -> phi2 x0 = pos_Rl lf1 i
x:R
H7:pos_Rl l1 i < x < pos_Rl l1 (S i)
H10:b < x

phi3 x = phi2 x
unfold phi3; destruct (Rle_dec a x) as [Hle|Hnle]; destruct (Rle_dec x b) as [Hle'|Hnle']; intros; [ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ Hle' H10)) | reflexivity | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] | elim Hnle; apply Rle_trans with b; [ assumption | left; assumption ] ]. Qed.

forall (f : R -> R) (a b c : R), Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f a c

forall (f : R -> R) (a b c : R), Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f a c
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b

IsStepFun phi a c
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
{phi0 : StepFun a c & {psi0 : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b

IsStepFun phi a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
a <= c <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
{phi0 : StepFun a c & {psi0 : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b

a <= c <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
{phi0 : StepFun a c & {psi0 : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c

{phi0 : StepFun a c & {psi0 : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c

IsStepFun psi a c
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
{phi0 : StepFun a c & {psi0 : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c

IsStepFun psi a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
a <= c <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
{phi0 : StepFun a c & {psi0 : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c

a <= c <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
{phi0 : StepFun a c & {psi0 : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

{phi0 : StepFun a c & {psi0 : StepFun a c | (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - {| fe := phi; pre := H3 |} t) <= {| fe := psi; pre := H4 |} t
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
t:R
H5:Rmin a c <= t <= Rmax a c

Rmin a b <= t <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
t:R
H5:Rmin a c <= t <= Rmax a c

Rmin a c <= t <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
t:R
H5:Rmin a c <= t
H6:t <= Rmax a c

t <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
t:R
H5:Rmin a c <= t
H6:t <= Rmax a c

Rmax a c <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

IsStepFun psi c b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

IsStepFun psi c a
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
IsStepFun psi a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

IsStepFun psi a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} <= RiemannInt_SF psi
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} <= RiemannInt_SF {| fe := psi; pre := H5 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

forall x : R, c < x < b -> {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} x <= {| fe := psi; pre := H5 |} x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
x:R
H6:c < x < b

0 <= Rabs (f x - phi x)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
x:R
H6:c < x < b
Rabs (f x - phi x) <= psi x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
x:R
H6:c < x < b

Rabs (f x - phi x) <= psi x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
x:R
H6:c < x < b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
x:R
H6:c < x < b

a <= x <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
x:R
H6:c < x < b

a <= x <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
x:R
H6:c < x
H7:x < b

a < x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
x:R
H6:c < x
H7:x < b
x < b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
x:R
H6:c < x
H7:x < b

x < b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

RiemannInt_SF psi <= Rabs (RiemannInt_SF psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
Rabs (RiemannInt_SF psi) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

Rabs (RiemannInt_SF psi) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b

IsStepFun psi a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b

RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b

RiemannInt_SF {| fe := psi; pre := H6 |} - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
RiemannInt_SF {| fe := psi; pre := H6 |} = RiemannInt_SF psi
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b

RiemannInt_SF {| fe := psi; pre := H6 |} = RiemannInt_SF psi
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
r:a <= b

Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
n:~ a <= b
- Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = - Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
r:a <= b

adapted_couple ?f ?a ?b (subdivision {| fe := psi; pre := H6 |}) (subdivision_val {| fe := psi; pre := H6 |})
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
r:a <= b
adapted_couple ?f ?a ?b (subdivision psi) (subdivision_val psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
n:~ a <= b
- Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = - Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
r:a <= b

adapted_couple {| fe := psi; pre := H6 |} a b (subdivision psi) (subdivision_val psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
n:~ a <= b
- Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = - Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
n:~ a <= b

- Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = - Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
n:~ a <= b

adapted_couple ?f ?a ?b (subdivision {| fe := psi; pre := H6 |}) (subdivision_val {| fe := psi; pre := H6 |})
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
n:~ a <= b
adapted_couple ?f ?a ?b (subdivision psi) (subdivision_val psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
H5:IsStepFun psi c b
H6:IsStepFun psi a b
n:~ a <= b

adapted_couple {| fe := psi; pre := H6 |} a b (subdivision psi) (subdivision_val psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} <= RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

forall x : R, a < x < c -> {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} x <= {| fe := psi; pre := H4 |} x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
x:R
H5:a < x < c

0 <= Rabs (f x - phi x)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
x:R
H5:a < x < c
Rabs (f x - phi x) <= psi x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
x:R
H5:a < x < c

Rabs (f x - phi x) <= psi x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
x:R
H5:a < x < c

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
x:R
H5:a < x < c

a <= x <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
x:R
H5:a < x < c

a <= x <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
x:R
H5:a < x
H6:x < c

a < x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
x:R
H5:a < x
H6:x < c
x < b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
x:R
H5:a < x
H6:x < c

x < b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi a c
H4:IsStepFun psi a c

RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
rewrite StepFun_P18; ring. Qed.

forall (f : R -> R) (a b c : R), Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f c b

forall (f : R -> R) (a b c : R), Riemann_integrable f a b -> a <= c <= b -> Riemann_integrable f c b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b

IsStepFun phi c b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
{phi0 : StepFun c b & {psi0 : StepFun c b | (forall t : R, Rmin c b <= t <= Rmax c b -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b

IsStepFun phi a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
a <= c <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
{phi0 : StepFun c b & {psi0 : StepFun c b | (forall t : R, Rmin c b <= t <= Rmax c b -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b

a <= c <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
{phi0 : StepFun c b & {psi0 : StepFun c b | (forall t : R, Rmin c b <= t <= Rmax c b -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b

{phi0 : StepFun c b & {psi0 : StepFun c b | (forall t : R, Rmin c b <= t <= Rmax c b -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b

IsStepFun psi c b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
{phi0 : StepFun c b & {psi0 : StepFun c b | (forall t : R, Rmin c b <= t <= Rmax c b -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b

IsStepFun psi a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
a <= c <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
{phi0 : StepFun c b & {psi0 : StepFun c b | (forall t : R, Rmin c b <= t <= Rmax c b -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b

a <= c <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
{phi0 : StepFun c b & {psi0 : StepFun c b | (forall t : R, Rmin c b <= t <= Rmax c b -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

{phi0 : StepFun c b & {psi0 : StepFun c b | (forall t : R, Rmin c b <= t <= Rmax c b -> Rabs (f t - phi0 t) <= psi0 t) /\ Rabs (RiemannInt_SF psi0) < eps}}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

forall t : R, Rmin c b <= t <= Rmax c b -> Rabs (f t - {| fe := phi; pre := H3 |} t) <= {| fe := psi; pre := H4 |} t
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b

Rmin a b <= t <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b

Rmin a b <= t <= Rmax c b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b
Rmax c b = Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b
H6:Rmin c b <= t
H7:t <= Rmax c b

Rmin a b <= t
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b
Rmax c b = Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b
H6:Rmin c b <= t
H7:t <= Rmax c b

Rmin a b <= Rmin c b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b
Rmax c b = Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b
H6:Rmin c b <= t
H7:t <= Rmax c b

a <= Rmin c b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b
Rmax c b = Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b

Rmax c b = Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t0 : R, Rmin a b <= t0 <= Rmax a b -> Rabs (f t0 - phi t0) <= psi t0
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
t:R
H5:Rmin c b <= t <= Rmax c b

b = Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

Rabs (RiemannInt_SF {| fe := psi; pre := H4 |}) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

IsStepFun psi a c
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

IsStepFun psi a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
IsStepFun psi b c
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

IsStepFun psi b c
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

RiemannInt_SF {| fe := psi; pre := H4 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} <= RiemannInt_SF psi
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} <= RiemannInt_SF {| fe := psi; pre := H5 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

forall x : R, a < x < c -> {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} x <= {| fe := psi; pre := H5 |} x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
x:R
H6:a < x < c

0 <= Rabs (f x - phi x)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
x:R
H6:a < x < c
Rabs (f x - phi x) <= psi x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
x:R
H6:a < x < c

Rabs (f x - phi x) <= psi x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
x:R
H6:a < x < c

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
x:R
H6:a < x < c

a <= x <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
x:R
H6:a < x < c

a <= x <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
x:R
H6:a < x
H7:x < c

a < x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
x:R
H6:a < x
H7:x < c
x < b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
x:R
H6:a < x
H7:x < c

x < b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 a c 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

RiemannInt_SF psi < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

RiemannInt_SF psi <= Rabs (RiemannInt_SF psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
Rabs (RiemannInt_SF psi) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

Rabs (RiemannInt_SF psi) < eps
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c

IsStepFun psi a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b

RiemannInt_SF psi - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b

RiemannInt_SF {| fe := psi; pre := H6 |} - RiemannInt_SF {| fe := psi; pre := H5 |} = RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
RiemannInt_SF {| fe := psi; pre := H6 |} = RiemannInt_SF psi
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b

RiemannInt_SF {| fe := psi; pre := H6 |} = RiemannInt_SF psi
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
r:a <= b

Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
n:~ a <= b
- Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = - Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
r:a <= b

adapted_couple ?f ?a ?b (subdivision {| fe := psi; pre := H6 |}) (subdivision_val {| fe := psi; pre := H6 |})
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
r:a <= b
adapted_couple ?f ?a ?b (subdivision psi) (subdivision_val psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
n:~ a <= b
- Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = - Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
r:a <= b

adapted_couple {| fe := psi; pre := H6 |} a b (subdivision psi) (subdivision_val psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
n:~ a <= b
- Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = - Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
n:~ a <= b

- Int_SF (subdivision_val {| fe := psi; pre := H6 |}) (subdivision {| fe := psi; pre := H6 |}) = - Int_SF (subdivision_val psi) (subdivision psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
n:~ a <= b

adapted_couple ?f ?a ?b (subdivision {| fe := psi; pre := H6 |}) (subdivision_val {| fe := psi; pre := H6 |})
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
n:~ a <= b
adapted_couple ?f ?a ?b (subdivision psi) (subdivision_val psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
H5:IsStepFun psi a c
H6:IsStepFun psi a b
n:~ a <= b

adapted_couple {| fe := psi; pre := H6 |} a b (subdivision psi) (subdivision_val psi)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

RiemannInt_SF {| fe := psi; pre := H4 |} >= 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} <= RiemannInt_SF {| fe := psi; pre := H4 |}
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

forall x : R, c < x < b -> {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} x <= {| fe := psi; pre := H4 |} x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
x:R
H5:c < x < b

0 <= Rabs (f x - phi x)
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
x:R
H5:c < x < b
Rabs (f x - phi x) <= psi x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
x:R
H5:c < x < b

Rabs (f x - phi x) <= psi x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
x:R
H5:c < x < b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
x:R
H5:c < x < b

a <= x <= Rmax a b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
x:R
H5:c < x < b

a <= x <= b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
x:R
H5:c < x
H6:x < b

a < x
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
x:R
H5:c < x
H6:x < b
x < b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
x:R
H5:c < x
H6:x < b

x < b
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b
RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
f:R -> R
a, b, c:R
eps:posreal
phi, psi:StepFun a b
H:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi t) <= psi t
H0:Rabs (RiemannInt_SF psi) < eps
H1:a <= c
H2:c <= b
H3:IsStepFun phi c b
H4:IsStepFun psi c b

RiemannInt_SF {| fe := fct_cte 0; pre := StepFun_P4 c b 0 |} = 0
rewrite StepFun_P18; ring. Qed.

forall (f : R -> R) (a b c : R), Riemann_integrable f a b -> Riemann_integrable f b c -> Riemann_integrable f a c

forall (f : R -> R) (a b c : R), Riemann_integrable f a b -> Riemann_integrable f b c -> Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
r0:a <= b

Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b

Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b
r0:a <= c

Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b
n0:~ a <= c
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b
r0:a <= c

a <= c <= b
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b
n0:~ a <= c
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b
n0:~ a <= c

Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b
n0:~ a <= c

Riemann_integrable f c b
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b
n0:~ a <= c
c <= a <= b
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
r:a <= b
n0:~ a <= c

c <= a <= b
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b

Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
r0:a <= c

Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
n0:~ a <= c
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
r0:a <= c

b <= a <= c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
n0:~ a <= c
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
n0:~ a <= c

Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
n0:~ a <= c

Riemann_integrable f b a
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
n0:~ a <= c
b <= c <= a
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
r:b <= c
n:~ a <= b
n0:~ a <= c

b <= c <= a
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b
Riemann_integrable f a c
f:R -> R
a, b, c:R
X:Riemann_integrable f a b
X0:Riemann_integrable f b c
n:~ b <= c
n0:~ a <= b

Riemann_integrable f a c
apply RiemannInt_P1; apply RiemannInt_P21 with b; auto with real || apply RiemannInt_P1; assumption. Qed.

forall (f : R -> R) (a b c : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable f b c) (pr3 : Riemann_integrable f a c), a <= b -> b <= c -> RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3

forall (f : R -> R) (a b c : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable f b c) (pr3 : Riemann_integrable f a c), a <= b -> b <= c -> RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1:R
HUn_cv1:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x

Un_cv ?Un x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1:R
HUn_cv1:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
Un_cv ?Un (x1 + x0)
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1:R
HUn_cv1:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x

Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) (x1 + x0)
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1:R
HUn_cv1:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0

0 < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1:R
HUn_cv1:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x1 + x0) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1:R
HUn_cv1:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr1 N)) x1
x0:R
HUn_cv0:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr2 N)) x0
x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x1 + x0) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3

Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n)) (x1 + x0) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (x1 + x0)) <= Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) + Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) < eps / 3 + eps / 3 + eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) < eps / 3 + eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0)) - 0) < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

(n >= N3)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0)) - 0) < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
(n >= N3)%nat
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) < eps / 3 + eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0)) - 0) < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

(n >= N3)%nat
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) < eps / 3 + eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) < eps / 3 + eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n) - (x1 + x0)) <= Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x1) + Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0)
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x1) + Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0) < eps / 3 + eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x1) + Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0) < eps / 3 + eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n) - x1) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr1 n0) - x1) < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

(n >= N1)%nat
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n) - x0) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> Rabs (RiemannInt_SF (phi_sequence RinvN pr2 n0) - x0) < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

(n >= N2)%nat
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n0 : nat, (n0 >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n0)) x1 < eps / 3
N2:nat
H2:forall n0 : nat, (n0 >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n0)) x0 < eps / 3
N3:nat
H3:forall n0 : nat, (n0 >= N3)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n0) - (RiemannInt_SF (phi_sequence RinvN pr1 n0) + RiemannInt_SF (phi_sequence RinvN pr2 n0))) 0 < eps / 3
N0:=Nat.max (Nat.max N1 N2) N3:nat
n:nat
H4:(n >= N0)%nat

eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
x1, x0, x:R
HUn_cv:Un_cv (fun N : nat => RiemannInt_SF (phi_sequence RinvN pr3 N)) x
eps:R
H:eps > 0
H0:0 < eps / 3
N1:nat
H1:forall n : nat, (n >= N1)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr1 n)) x1 < eps / 3
N2:nat
H2:forall n : nat, (n >= N2)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr2 n)) x0 < eps / 3

Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c

exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n

Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n

exists psi2 : nat -> StepFun b c, forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H2:exists psi2 : nat -> StepFun b c, forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H2:exists psi2 : nat -> StepFun b c, forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H2:exists psi2 : nat -> StepFun b c, forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n

exists psi3 : nat -> StepFun a c, forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H2:exists psi2 : nat -> StepFun b c, forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
H3:exists psi3 : nat -> StepFun a c, forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
H1:exists psi1 : nat -> StepFun a b, forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H2:exists psi2 : nat -> StepFun b c, forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
H3:exists psi3 : nat -> StepFun a c, forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n

Un_cv (fun n : nat => RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
psi2:nat -> StepFun b c
H2:forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi3:nat -> StepFun a c
H3:forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H:Un_cv (fun N : nat => RinvN N) 0
eps:R
H0:eps > 0

0 < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
psi2:nat -> StepFun b c
H2:forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi3:nat -> StepFun a c
H3:forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H:Un_cv (fun N : nat => RinvN N) 0
eps:R
H0:eps > 0
H4:0 < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0 < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
psi2:nat -> StepFun b c
H2:forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi3:nat -> StepFun a c
H3:forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
H:Un_cv (fun N : nat => RinvN N) 0
eps:R
H0:eps > 0
H4:0 < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0 < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
psi2:nat -> StepFun b c
H2:forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi3:nat -> StepFun a c
H3:forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n : nat, (n >= N0)%nat -> R_dist (RinvN n) 0 < eps / 3

forall n : nat, (n >= N0)%nat -> RinvN n < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
psi2:nat -> StepFun b c
H2:forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi3:nat -> StepFun a c
H3:forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n : nat, (n >= N0)%nat -> R_dist (RinvN n) 0 < eps / 3
H5:forall n : nat, (n >= N0)%nat -> RinvN n < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0 < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun b c
H2:forall n0 : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a c
H3:forall n0 : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
n:nat
H5:(n >= N0)%nat

R_dist {| pos := / (INR n + 1); cond_pos := RinvN_pos n |} 0 < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun b c
H2:forall n0 : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a c
H3:forall n0 : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
n:nat
H5:(n >= N0)%nat
R_dist {| pos := / (INR n + 1); cond_pos := RinvN_pos n |} 0 = RinvN n
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
psi2:nat -> StepFun b c
H2:forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi3:nat -> StepFun a c
H3:forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n : nat, (n >= N0)%nat -> R_dist (RinvN n) 0 < eps / 3
H5:forall n : nat, (n >= N0)%nat -> RinvN n < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0 < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n0 : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n0 t) <= psi1 n0 t) /\ Rabs (RiemannInt_SF (psi1 n0)) < RinvN n0
psi2:nat -> StepFun b c
H2:forall n0 : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n0 t) <= psi2 n0 t) /\ Rabs (RiemannInt_SF (psi2 n0)) < RinvN n0
psi3:nat -> StepFun a c
H3:forall n0 : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n0 t) <= psi3 n0 t) /\ Rabs (RiemannInt_SF (psi3 n0)) < RinvN n0
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
n:nat
H5:(n >= N0)%nat

R_dist {| pos := / (INR n + 1); cond_pos := RinvN_pos n |} 0 = RinvN n
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
psi2:nat -> StepFun b c
H2:forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi3:nat -> StepFun a c
H3:forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n : nat, (n >= N0)%nat -> R_dist (RinvN n) 0 < eps / 3
H5:forall n : nat, (n >= N0)%nat -> RinvN n < eps / 3
exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0 < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
H1:forall n : nat, (forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi_sequence RinvN pr1 n t) <= psi1 n t) /\ Rabs (RiemannInt_SF (psi1 n)) < RinvN n
psi2:nat -> StepFun b c
H2:forall n : nat, (forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi_sequence RinvN pr2 n t) <= psi2 n t) /\ Rabs (RiemannInt_SF (psi2 n)) < RinvN n
psi3:nat -> StepFun a c
H3:forall n : nat, (forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi_sequence RinvN pr3 n t) <= psi3 n t) /\ Rabs (RiemannInt_SF (psi3 n)) < RinvN n
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n : nat, (n >= N0)%nat -> R_dist (RinvN n) 0 < eps / 3
H5:forall n : nat, (n >= N0)%nat -> RinvN n < eps / 3

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (RiemannInt_SF (phi_sequence RinvN pr3 n) - (RiemannInt_SF (phi_sequence RinvN pr1 n) + RiemannInt_SF (phi_sequence RinvN pr2 n))) 0 < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n

IsStepFun phi3 a b
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n

IsStepFun phi3 a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
a <= b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n

a <= b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b

Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b

IsStepFun (psi3 n) a b
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b

IsStepFun (psi3 n) a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
a <= b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b

a <= b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b

Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b

IsStepFun phi3 b c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b

IsStepFun phi3 a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
a <= b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b

a <= b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c

Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c

IsStepFun (psi3 n) b c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c

IsStepFun (psi3 n) a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
a <= b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c

a <= b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF phi3 + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} + - (RiemannInt_SF phi1 + RiemannInt_SF phi2)) <= Rabs (RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1) + Rabs (RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2)
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
Rabs (RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1) + Rabs (RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1) + Rabs (RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |}) + Rabs (RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |}) + Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |}) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |}) + Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |}) <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |}) + Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |}) <= Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |}) + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |}) + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |}) <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |}) + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |}) + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} <= RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

forall x : R, b < x < c -> {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => {| fe := phi3; pre := H12 |} x1 + -1 * phi2 x1; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} x0); pre := StepFun_P32 {| fe := fun x0 : R => {| fe := phi3; pre := H12 |} x0 + -1 * phi2 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} |} x <= {| fe := fun x0 : R => {| fe := psi3 n; pre := H13 |} x0 + 1 * psi2 n x0; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c

Rabs (phi3 x + -1 * phi2 x) <= Rabs (f x - phi3 x) + Rabs (f x - phi2 x)
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
Rabs (f x - phi3 x) + Rabs (f x - phi2 x) <= psi3 n x + psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c

Rabs (f x - phi3 x) + Rabs (f x - phi2 x) <= psi3 n x + psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c

Rabs (f x - phi3 x) <= psi3 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
Rabs (f x - phi2 x) <= psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c

Rmin a c <= x <= Rmax a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
Rabs (f x - phi2 x) <= psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c

Rmin a c <= x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c
x <= Rmax a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
Rabs (f x - phi2 x) <= psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c

a <= x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c
x <= Rmax a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
Rabs (f x - phi2 x) <= psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c

b <= x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c
x <= Rmax a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
Rabs (f x - phi2 x) <= psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c

x <= Rmax a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
Rabs (f x - phi2 x) <= psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c

x <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
Rabs (f x - phi2 x) <= psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c

Rabs (f x - phi2 x) <= psi2 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c

Rmin b c <= x <= Rmax b c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c

Rmin b c <= x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c
x <= Rmax b c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c

b <= x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c
x <= Rmax b c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c

x <= Rmax b c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:b < x < c
H15:b < x
H16:x < c

x <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := fun x : R => Rabs ({| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x); pre := StepFun_P32 {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} <= RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |}
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

forall x : R, a < x < b -> {| fe := fun x0 : R => Rabs ({| fe := fun x1 : R => {| fe := phi3; pre := H10 |} x1 + -1 * phi1 x1; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} x0); pre := StepFun_P32 {| fe := fun x0 : R => {| fe := phi3; pre := H10 |} x0 + -1 * phi1 x0; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} |} x <= {| fe := fun x0 : R => {| fe := psi3 n; pre := H11 |} x0 + 1 * psi1 n x0; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b

Rabs (phi3 x + -1 * phi1 x) <= Rabs (f x - phi3 x) + Rabs (f x - phi1 x)
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
Rabs (f x - phi3 x) + Rabs (f x - phi1 x) <= psi3 n x + psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b

Rabs (f x - phi3 x) + Rabs (f x - phi1 x) <= psi3 n x + psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b

Rabs (f x - phi3 x) <= psi3 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
Rabs (f x - phi1 x) <= psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b

Rmin a c <= x <= Rmax a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
Rabs (f x - phi1 x) <= psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

Rmin a c <= x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b
x <= Rmax a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
Rabs (f x - phi1 x) <= psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

a <= x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b
x <= Rmax a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
Rabs (f x - phi1 x) <= psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

x <= Rmax a c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
Rabs (f x - phi1 x) <= psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

x <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
Rabs (f x - phi1 x) <= psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

x <= b
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b
b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
Rabs (f x - phi1 x) <= psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

b <= c
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
Rabs (f x - phi1 x) <= psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b

Rabs (f x - phi1 x) <= psi1 n x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b

Rmin a b <= x <= Rmax a b
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

Rmin a b <= x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b
x <= Rmax a b
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

a <= x
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b
x <= Rmax a b
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

x <= Rmax a b
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
x:R
H14:a < x < b
H15:a < x
H16:x < b

x <= b
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H11 |} x + 1 * psi1 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H11 |} (psi1 n) |} + RiemannInt_SF {| fe := fun x : R => {| fe := psi3 n; pre := H13 |} x + 1 * psi2 n x; pre := StepFun_P28 1 {| fe := psi3 n; pre := H13 |} (psi2 n) |} < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := psi3 n; pre := H11 |} + 1 * RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + 1 * RiemannInt_SF (psi2 n)) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) < eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) < eps / 3 + eps / 3 + eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF (psi3 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi1 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF (psi3 n) <= Rabs (RiemannInt_SF (psi3 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
Rabs (RiemannInt_SF (psi3 n)) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi1 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF (psi3 n)) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi1 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF (psi3 n)) < RinvN n
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RinvN n < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi1 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RinvN n < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi1 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF (psi1 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF (psi1 n) <= Rabs (RiemannInt_SF (psi1 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
Rabs (RiemannInt_SF (psi1 n)) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF (psi1 n)) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF (psi1 n)) < RinvN n
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RinvN n < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RinvN n < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF (psi2 n) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF (psi2 n) <= Rabs (RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
Rabs (RiemannInt_SF (psi2 n)) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF (psi2 n)) < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

Rabs (RiemannInt_SF (psi2 n)) < RinvN n
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RinvN n < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RinvN n < eps / 3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

eps / 3 + eps / 3 + eps / 3 = eps
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF (psi3 n) + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := psi3 n; pre := pre (psi3 n) |} + RiemannInt_SF (psi1 n) + RiemannInt_SF (psi2 n) = RiemannInt_SF {| fe := psi3 n; pre := H11 |} + RiemannInt_SF (psi1 n) + (RiemannInt_SF {| fe := psi3 n; pre := H13 |} + RiemannInt_SF (psi2 n))
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := psi3 n; pre := pre (psi3 n) |} = RiemannInt_SF (psi3 n)
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := psi3 n; pre := pre (psi3 n) |} = RiemannInt_SF (psi3 n)
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H12 |} x + -1 * phi2 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H12 |} phi2 |} = RiemannInt_SF {| fe := phi3; pre := H12 |} - RiemannInt_SF phi2
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := fun x : R => {| fe := phi3; pre := H10 |} x + -1 * phi1 x; pre := StepFun_P28 (-1) {| fe := phi3; pre := H10 |} phi1 |} = RiemannInt_SF {| fe := phi3; pre := H10 |} - RiemannInt_SF phi1
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c
RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hyp1:a <= b
Hyp2:b <= c
psi1:nat -> StepFun a b
psi2:nat -> StepFun b c
psi3:nat -> StepFun a c
eps:R
H0:eps > 0
H4:0 < eps / 3
N0:nat
H:forall n0 : nat, (n0 >= N0)%nat -> R_dist (RinvN n0) 0 < eps / 3
H5:forall n0 : nat, (n0 >= N0)%nat -> RinvN n0 < eps / 3
n:nat
H6:(n >= N0)%nat
phi3:=phi_sequence RinvN pr3 n:StepFun a c
H1:forall t : R, Rmin a c <= t <= Rmax a c -> Rabs (f t - phi3 t) <= psi3 n t
H2:Rabs (RiemannInt_SF (psi3 n)) < RinvN n
phi2:=phi_sequence RinvN pr2 n:StepFun b c
H3:forall t : R, Rmin b c <= t <= Rmax b c -> Rabs (f t - phi2 t) <= psi2 n t
H7:Rabs (RiemannInt_SF (psi2 n)) < RinvN n
phi1:=phi_sequence RinvN pr1 n:StepFun a b
H8:forall t : R, Rmin a b <= t <= Rmax a b -> Rabs (f t - phi1 t) <= psi1 n t
H9:Rabs (RiemannInt_SF (psi1 n)) < RinvN n
H10:IsStepFun phi3 a b
H11:IsStepFun (psi3 n) a b
H12:IsStepFun phi3 b c
H13:IsStepFun (psi3 n) b c

RiemannInt_SF {| fe := phi3; pre := H10 |} + RiemannInt_SF {| fe := phi3; pre := H12 |} = RiemannInt_SF phi3
apply (StepFun_P43 H10 H12 (pre phi3)). Qed.

forall (f : R -> R) (a b c : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable f b c) (pr3 : Riemann_integrable f a c), RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3

forall (f : R -> R) (a b c : R) (pr1 : Riemann_integrable f a b) (pr2 : Riemann_integrable f b c) (pr3 : Riemann_integrable f a c), RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hle':b <= c

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hle'':a <= c

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hnle'':~ a <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hle'':a <= c

c <= b
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hle'':a <= c
H:c <= b
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hnle'':~ a <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hle'':a <= c
H:c <= b

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hnle'':~ a <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hnle'':~ a <= c

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hnle'':~ a <= c

c <= a
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hnle'':~ a <= c
H:c <= a
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hle:a <= b
Hnle':~ b <= c
Hnle'':~ a <= c
H:c <= a

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c

b <= a
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
H:b <= a
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
H:b <= a

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
H:b <= a
Hle'':a <= c

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
H:b <= a
Hnle'':~ a <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
H:b <= a
Hnle'':~ a <= c

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
H:b <= a
Hnle'':~ a <= c

c <= a
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
H:b <= a
Hnle'':~ a <= c
H0:c <= a
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hle':b <= c
H:b <= a
Hnle'':~ a <= c
H0:c <= a

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
f:R -> R
a, b, c:R
pr1:Riemann_integrable f a b
pr2:Riemann_integrable f b c
pr3:Riemann_integrable f a c
Hnle:~ a <= b
Hnle':~ b <= c

RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3
rewrite (RiemannInt_P8 pr1 (RiemannInt_P1 pr1)); rewrite (RiemannInt_P8 pr2 (RiemannInt_P1 pr2)); rewrite (RiemannInt_P8 pr3 (RiemannInt_P1 pr3)); rewrite <- (RiemannInt_P25 (RiemannInt_P1 pr2) (RiemannInt_P1 pr1) (RiemannInt_P1 pr3)) ; [ ring | auto with real | auto with real ]. Qed.

forall (f : R -> R) (a b x : R) (h : a <= b) (C0 : forall x0 : R, a <= x0 <= b -> continuity_pt f x0), a < x < b -> derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)

forall (f : R -> R) (a b x : R) (h : a <= b) (C0 : forall x0 : R, a <= x0 <= b -> continuity_pt f x0), a < x < b -> derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a < x
H0:x < b

continuity_pt f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a < x
H0:x < b
H1:continuity_pt f x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a < x
H0:x < b
H1:continuity_pt f x

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps

0 < eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R

0 < del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
r:b - x <= x - a

0 < (if Rle_dec x0 (b - x) then x0 else b - x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
n:~ b - x <= x - a
0 < (if Rle_dec x0 (x - a) then x0 else x - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
n:~ b - x <= x - a

0 < (if Rle_dec x0 (x - a) then x0 else x - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}

Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0

Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0

forall x1 : R, x <= x1 <= x + h0 -> continuity_pt f x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0

a <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0

x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0

x1 <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0
x + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0

x + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0

x + h0 < x + del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0
x + del <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0

x + del <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0

x + Rmin x0 (Rmin (b - x) (x - a)) <= x + Rmin (b - x) (x - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0
x + Rmin (b - x) (x - a) <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hle'':x <= x + h0
x1:R
H7:x <= x1 <= x + h0
H8:x <= x1
H9:x1 <= x + h0

x + Rmin (b - x) (x - a) <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0

Riemann_integrable f x (x + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0

forall x1 : R, x + h0 <= x1 <= x -> continuity_pt f x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

a <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

a <= x - del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x - del < x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

a <= x - Rmin (b - x) (x - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x - Rmin (b - x) (x - a) <= x - Rmin x0 (Rmin (b - x) (x - a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x - del < x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

x + (a - x) <= x - Rmin (b - x) (x - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x - Rmin (b - x) (x - a) <= x - Rmin x0 (Rmin (b - x) (x - a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x - del < x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

- - Rmin (b + - x) (x + - a) <= - (a + - x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x - Rmin (b - x) (x - a) <= x - Rmin x0 (Rmin (b - x) (x - a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x - del < x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

x - Rmin (b - x) (x - a) <= x - Rmin x0 (Rmin (b - x) (x - a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x - del < x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

- - Rmin x0 (Rmin (b + - x) (x + - a)) <= - - Rmin (b + - x) (x + - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x - del < x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

x - del < x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

- h0 < - - del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

x + h0 <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x
x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
Hnle'':~ x <= x + h0
x1:R
H7:x + h0 <= x1 <= x
H8:x + h0 <= x1
H9:x1 <= x

x1 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

Rabs (RiemannInt H7 / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

Rabs (RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

Rabs ((RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) / h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

0 <= Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) <= RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

0 <= Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) <= RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) <= RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

forall x1 : R, x < x1 < x + h0 -> Rabs (f x1 + -1 * fct_cte (f x) x1) <= fct_cte (eps / 2) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0

Rabs (f x1 - f x) <= fct_cte (eps / 2) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x = x1

Rabs (f x1 - f x) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
Rabs (f x1 - f x) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1

Rabs (f x1 - f x) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

(True /\ x <> x1) /\ Rabs (x1 - x) < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x <> x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
Rabs (x1 - x) < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

Rabs (x1 - x) < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x1 - x < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x1 < x + x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x1 < x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x + h0 <= x + x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x + h0 <= x + x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

h0 <= del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
del <= x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

del <= x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x1 - x >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
x1:R
H8:x < x1 < x + h0

f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

RiemannInt (RiemannInt_P14 x (x + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

eps / 2 * (x + h0 - x) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

eps / 2 * 1 < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
1 = (x + h0 - x) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

1 = (x + h0 - x) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

1 = (x + h0 - x) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
/ h0 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

1 = h0 * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
/ h0 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

h0 <> 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
/ h0 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

/ h0 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
H8:x < x + h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
H8:x = x + h0
0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hle:x <= x + h0
H8:x = x + h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) * Rabs (/ h0) <= RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

0 <= Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) <= RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

Rabs (RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) <= RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

Rabs (- RiemannInt (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) <= RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
- RiemannInt (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) = RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

- RiemannInt (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))) = RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x)))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) * Rabs (/ h0) <= RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

0 <= Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) <= RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

RiemannInt (RiemannInt_P16 (RiemannInt_P1 (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))))) <= RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

x + h0 <= x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
forall x1 : R, x + h0 < x1 < x -> Rabs (f x1 + -1 * fct_cte (f x) x1) <= fct_cte (eps / 2) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

forall x1 : R, x + h0 < x1 < x -> Rabs (f x1 + -1 * fct_cte (f x) x1) <= fct_cte (eps / 2) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x

Rabs (f x1 - f x) <= fct_cte (eps / 2) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x = x1

Rabs (f x1 - f x) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
Rabs (f x1 - f x) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1

Rabs (f x1 - f x) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

(True /\ x <> x1) /\ Rabs (x1 - x) < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x <> x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
Rabs (x1 - x) < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

Rabs (x1 - x) < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

- (x1 - x) < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x1 - x0 + - (x1 - x) < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x - x0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x - x0 <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x + h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

- h0 <= - - x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x + h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

- h0 <= Rabs h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
Rabs h0 <= x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x + h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

Rabs h0 <= x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x + h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x + h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2
x1 - x < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
H9:x <> x1
H10:x0 > 0
H11:forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2

x1 - x < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x
f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x2 : R, (True /\ x <> x2) /\ Rabs (x2 - x) < x0 -> Rabs (f x2 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
x1:R
H8:x + h0 < x1 < x

f x1 - f x = f x1 + -1 * fct_cte (f x) x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

RiemannInt (RiemannInt_P14 (x + h0) x (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

eps / 2 * (x - (x + h0)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

eps / 2 * 1 < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
1 = (x - (x + h0)) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

1 = (x - (x + h0)) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

1 = (x - (x + h0)) * - / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
/ h0 < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

1 = - h0 * - / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
/ h0 < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

h0 <> 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
/ h0 < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

/ h0 < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

h0 < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0

x + h0 < x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
H8:x + h0 < x
h0 < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Hnle:~ x <= x + h0
H8:x + h0 < x

h0 < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

RiemannInt (RiemannInt_P10 (-1) H7 (RiemannInt_P14 x (x + h0) (f x))) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

RiemannInt H7 + -1 * RiemannInt (RiemannInt_P14 x (x + h0) (f x)) = RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

(RiemannInt H7 - RiemannInt (RiemannInt_P14 x (x + h0) (f x))) / h0 = RiemannInt H7 / h0 - RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

RiemannInt (RiemannInt_P14 x (x + h0) (f x)) / h0 = f x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

a <= x + h0 -> RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

x + h0 <= b -> a <= x + h0 -> RiemannInt H7 = primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
x + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
H8:x + h0 <= b
H9:a <= x + h0

RiemannInt H7 = match Rle_dec a (x + h0) with | left r => match Rle_dec (x + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (x + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (x + h0 - a) end - match Rle_dec a x with | left r => match Rle_dec x b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (x - a) end
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
x + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
H8:x + h0 <= b
H9:a <= x + h0
H10:a <= x

RiemannInt H7 = match Rle_dec a (x + h0) with | left r => match Rle_dec (x + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (x + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (x + h0 - a) end - match Rle_dec a x with | left r => match Rle_dec x b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (x - a) end
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
x + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
H8:x + h0 <= b
H9:a <= x + h0
H10:a <= x
H11:x <= b

RiemannInt H7 = match Rle_dec a (x + h0) with | left r => match Rle_dec (x + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (x + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (x + h0 - a) end - match Rle_dec a x with | left r => match Rle_dec x b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (x - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (x - a) end
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
x + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
H9:a <= x + h0
H8:x + h0 <= b
H10:a <= x
H11:x <= b

RiemannInt H7 = RiemannInt (FTC_P1 h C0 H9 H8) - RiemannInt (FTC_P1 h C0 H10 H11)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
x + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

x + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

h0 <= - x + b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

h0 <= Rabs h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
Rabs h0 <= b + - x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

Rabs h0 <= b + - x
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)
a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

a <= x + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H:a < x
H0:x < b
H1:continuity_pt f x
eps:R
H2:0 < eps
Hyp:0 < eps / 2
x0:R
H3:x0 > 0 /\ (forall x1 : R, (True /\ x <> x1) /\ Rabs (x1 - x) < x0 -> Rabs (f x1 - f x) < eps / 2)
del:=Rmin x0 (Rmin (b - x) (x - a)):R
H4:0 < del
h0:R
H5:h0 <> 0
H6:Rabs h0 < {| pos := del; cond_pos := H4 |}
H7:Riemann_integrable f x (x + h0)

- h0 <= x + - a
apply Rle_trans with (Rabs h0); [ rewrite <- Rabs_Ropp; apply RRle_abs | apply Rle_trans with del; [ left; assumption | unfold del; apply Rle_trans with (Rmin (b - x) (x - a)); apply Rmin_r ] ]. Qed.

forall (f : R -> R) (a b x : R) (h : a <= b) (C0 : forall x0 : R, a <= x0 <= b -> continuity_pt f x0), a <= x <= b -> derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)

forall (f : R -> R) (a b x : R) (h : a <= b) (C0 : forall x0 : R, a <= x0 <= b -> continuity_pt f x0), a <= x <= b -> derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a < b

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x < b

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim f_b b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b))) b (f b + 0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (f b) * (id - fct_cte b) + fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (f b + 0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (f b) * (id - fct_cte b)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (f b) * (id - fct_cte b)) b (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (f b)) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (id - fct_cte b) b 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (id - fct_cte b) b 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (id - fct_cte b) b (1 - 0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim id b 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte b) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte b) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)

derivable_pt_lim (primitive h (FTC_P1 h C0)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x1 : R => f b * (x1 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps

continuity_pt f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x1 : R => f b * (x1 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x1 : R => f b * (x1 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x1 : R => f b * (x1 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b

0 < eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x1 : R => f b * (x1 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x1 : R => f b * (x1 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R

0 < del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
r:x1 <= b - a

0 < (if Rle_dec x0 x1 then x0 else x1)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
n:~ x1 <= b - a
0 < (if Rle_dec x0 (b - a) then x0 else b - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
n:~ x1 <= b - a

0 < (if Rle_dec x0 (b - a) then x0 else b - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0

Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0

b + h0 < b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b

Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b

Riemann_integrable f (b + h0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b

b + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
forall x2 : R, b + h0 <= x2 <= b -> continuity_pt f x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b

forall x2 : R, b + h0 <= x2 <= b -> continuity_pt f x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b

a <= x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b

a <= b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b

- a - h0 + a <= - a - h0 + (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b

- h0 <= - a - h0 + (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b

- h0 <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b

- h0 <= del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b
del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b

- h0 <= Rabs h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b
Rabs h0 <= del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b
del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b

Rabs h0 <= del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b
del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
x2:R
H13:b + h0 <= x2 <= b
H15:b + h0 <= x2
H16:x2 <= b

del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

Rabs (- RiemannInt H13 / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

Rabs (- RiemannInt H13 / h0 - - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

Rabs ((RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

Rabs (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) / h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

Rabs (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) * Rabs (/ h0) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

0 <= Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

Rabs (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) * Rabs (/ h0) <= RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

0 <= Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) <= RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b)))) <= RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

b + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
forall x2 : R, b + h0 < x2 < b -> Rabs (f x2 + -1 * fct_cte (f b) x2) <= fct_cte (eps / 2) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

forall x2 : R, b + h0 < x2 < b -> Rabs (f x2 + -1 * fct_cte (f b) x2) <= fct_cte (eps / 2) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b

Rabs (f x2 - f b) <= fct_cte (eps / 2) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b = x2

Rabs (f x2 - f b) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
Rabs (f x2 - f b) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2

Rabs (f x2 - f b) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

(True /\ b <> x2) /\ Rabs (x2 - b) < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

b <> x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
Rabs (x2 - b) < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

Rabs (x2 - b) < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

b - x2 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
b - x2 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

b - x1 < x2 - x1 + x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
b - x2 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

b - x1 < x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
b - x2 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

b - x1 < b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
b + h0 <= x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
b - x2 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

b - x1 < b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
b - x2 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

- h0 <= Rabs h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
Rabs h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
b - x2 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

Rabs h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2
b - x2 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
H16:b <> x2
H17:x1 > 0
H18:forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2

b - x2 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b
f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x3 : R => f b * (x3 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x3 : R, (True /\ b <> x3) /\ Rabs (x3 - b) < x1 -> Rabs (f x3 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
x2:R
H15:b + h0 < x2 < b

f x2 - f b = f x2 + -1 * fct_cte (f b) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

RiemannInt (RiemannInt_P14 (b + h0) b (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

eps / 2 * (b - (b + h0)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

eps / 2 * 1 < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
1 = (b - (b + h0)) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

1 = (b - (b + h0)) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

1 = (b - (b + h0)) * - / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
/ h0 < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

/ h0 < 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 (b + h0) b (f b))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

(RiemannInt H13 - RiemannInt (RiemannInt_P14 (b + h0) b (f b))) / h0 = RiemannInt H13 * / h0 + - RiemannInt (RiemannInt_P14 (b + h0) b (f b)) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

- RiemannInt (RiemannInt_P14 (b + h0) b (f b)) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

- (f b * (b - (b + h0))) / h0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

- RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

a <= b + h0 -> - RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
a <= b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

b + h0 <= b -> a <= b + h0 -> - RiemannInt H13 = primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
b + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
a <= b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
H15:b + h0 <= b
H16, Hle':a <= b + h0
Hle'':b + h0 <= b
Hleab:a <= b
Hlebb:b <= b

- RiemannInt H13 = RiemannInt (FTC_P1 h C0 Hle' Hle'') - RiemannInt (FTC_P1 h C0 Hleab Hlebb)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
H15:b + h0 <= b
H16:a <= b + h0
Hnle':~ a <= b + h0
Hle'':b + h0 <= b
Hleab:a <= b
Hlebb:b <= b
- RiemannInt H13 = f a * (b + h0 - a) - RiemannInt (FTC_P1 h C0 Hleab Hlebb)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
b + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
a <= b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
H15:b + h0 <= b
H16:a <= b + h0
Hnle':~ a <= b + h0
Hle'':b + h0 <= b
Hleab:a <= b
Hlebb:b <= b

- RiemannInt H13 = f a * (b + h0 - a) - RiemannInt (FTC_P1 h C0 Hleab Hlebb)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
b + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
a <= b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

b + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
a <= b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

a <= b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

- a - h0 + a <= - a - h0 + (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

- h0 <= - a - h0 + (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

- h0 <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

- h0 <= del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

- h0 <= Rabs h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
Rabs h0 <= del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

Rabs h0 <= del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b
del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hle:h0 < 0
H14:b + h0 < b
H13:Riemann_integrable f (b + h0) b

del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0

Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0

primitive h (FTC_P1 h C0) b = f_b b -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b

primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0) -> Rabs ((primitive h (FTC_P1 h C0) (b + h0) - primitive h (FTC_P1 h C0) b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)

h0 <> 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
Rabs h0 < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)

Rabs h0 < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b

primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b

b < b + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:b < b + h0
primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:b < b + h0
primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:0 <= h0
H15:0 < h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:0 <= h0
H15:0 = h0
0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:b < b + h0
primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:0 <= h0
H15:0 = h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:b < b + h0
primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
H13:primitive h (FTC_P1 h C0) b = f_b b
H14:b < b + h0

primitive h (FTC_P1 h C0) (b + h0) = f_b (b + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0
primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a < x
H3:x = b
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H4:derivable_pt_lim f_b b (f b)
eps:R
H5:0 < eps
x0:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
H7:continuity_pt f b
H8:0 < eps / 2
x1:R
H9:x1 > 0 /\ (forall x2 : R, (True /\ b <> x2) /\ Rabs (x2 - b) < x1 -> Rabs (f x2 - f b) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H10:0 < del
h0:R
H11:h0 <> 0
H12:Rabs h0 < {| pos := del; cond_pos := H10 |}
Hnle:h0 >= 0

primitive h (FTC_P1 h C0) b = f_b b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
(*****)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim f_a a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)) a (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (fct_cte (f a)) a 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
derivable_pt_lim (id - fct_cte a) a 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (id - fct_cte a) a 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (id - fct_cte a) a (1 - 0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim id a 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
derivable_pt_lim (fct_cte a) a 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (fct_cte a) a 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R

0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H3:derivable_pt_lim f_a a (f a)

derivable_pt_lim (primitive h (FTC_P1 h C0)) a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x1 : R => f a * (x1 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x1 : R => f a * (x1 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps

continuity_pt f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x1 : R => f a * (x1 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x1 : R => f a * (x1 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x1 : R => f a * (x1 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a

0 < eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x1 : R => f a * (x1 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x1 : R, a <= x1 <= b -> continuity_pt f x1
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x1 : R => f a * (x1 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R

0 < del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R

0 < (if Rle_dec x0 (if Rle_dec x1 (b - a) then x1 else b - a) then x0 else if Rle_dec x1 (b - a) then x1 else b - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
r:x1 <= b - a

0 < (if Rle_dec x0 x1 then x0 else x1)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
n:~ x1 <= b - a
0 < (if Rle_dec x0 (b - a) then x0 else b - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
r:x1 <= b - a
r0:x0 <= x1

0 < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
r:x1 <= b - a
n:~ x0 <= x1
0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
n:~ x1 <= b - a
0 < (if Rle_dec x0 (b - a) then x0 else b - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
r:x1 <= b - a
n:~ x0 <= x1

0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
n:~ x1 <= b - a
0 < (if Rle_dec x0 (b - a) then x0 else b - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
n:~ x1 <= b - a

0 < (if Rle_dec x0 (b - a) then x0 else b - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
n:~ x1 <= b - a
r:x0 <= b - a

0 < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
n:~ x1 <= b - a
n0:~ x0 <= b - a
0 < b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
n:~ x1 <= b - a
n0:~ x0 <= b - a

0 < b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del

forall h0 : R, h0 <> 0 -> Rabs h0 < {| pos := del; cond_pos := H9 |} -> Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0

Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0

a + h0 < a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a

Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a

Rabs ((match Rle_dec a (a + h0) with | left r => match Rle_dec (a + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (a + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (a + h0 - a) end - match Rle_dec a a with | left r => match Rle_dec a b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (a - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (a - a) end) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hle':a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b

Rabs ((RiemannInt (FTC_P1 h C0 Hle' Hle'') - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hle':a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f b * (a + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hle':a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b

Rabs ((f b * (a + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b

Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b

Rabs ((f a * (a + h0 - a) - f_a a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b

Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
f_a (a + h0) = f a * (a + h0 - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b

Rabs h0 < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
f_a (a + h0) = f a * (a + h0 - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b

f_a (a + h0) = f a * (a + h0 - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hle'':a + h0 <= b
Hleaa:a <= a
Hleab:a <= b

f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b
Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hle:h0 < 0
H12:a + h0 < a
Hnle':~ a <= a + h0
Hnle'':~ a + h0 <= b
Hleaa:a <= a
Hleab:a <= b

Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 Hleaa Hleab)) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0

Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0

a < a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:0 <= h0
H13:0 < h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:0 <= h0
H13:0 = h0
0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:0 <= h0
H13:0 = h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0

Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0

Riemann_integrable f a (a + h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0

a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
forall x2 : R, a <= x2 <= a + h0 -> continuity_pt f x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0

forall x2 : R, a <= x2 <= a + h0 -> continuity_pt f x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
x2:R
H13:a <= x2 <= a + h0
H14:a <= x2
H15:x2 <= a + h0

x2 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
x2:R
H13:a <= x2 <= a + h0
H14:a <= x2
H15:x2 <= a + h0

a + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
x2:R
H13:a <= x2 <= a + h0
H14:a <= x2
H15:x2 <= a + h0

- b - h0 + (a + h0) <= - b - h0 + b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
x2:R
H13:a <= x2 <= a + h0
H14:a <= x2
H15:x2 <= a + h0

- b - h0 + (a + h0) <= - h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
x2:R
H13:a <= x2 <= a + h0
H14:a <= x2
H15:x2 <= a + h0

a - b <= - h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
x2:R
H13:a <= x2 <= a + h0
H14:a <= x2
H15:x2 <= a + h0

h0 <= del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
x2:R
H13:a <= x2 <= a + h0
H14:a <= x2
H15:x2 <= a + h0
del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
x2:R
H13:a <= x2 <= a + h0
H14:a <= x2
H15:x2 <= a + h0

del <= b - a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

Rabs ((primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

Rabs (RiemannInt H13 / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

Rabs (RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

Rabs ((RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

Rabs (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) / h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

Rabs (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) * Rabs (/ h0) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

0 <= Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
Rabs (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

Rabs (RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) <= RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) * Rabs (/ h0) <= RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

0 <= Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) <= RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

RiemannInt (RiemannInt_P16 (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a)))) <= RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
forall x2 : R, a < x2 < a + h0 -> Rabs (f x2 + -1 * fct_cte (f a) x2) <= fct_cte (eps / 2) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

forall x2 : R, a < x2 < a + h0 -> Rabs (f x2 + -1 * fct_cte (f a) x2) <= fct_cte (eps / 2) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0

Rabs (f x2 - f a) <= fct_cte (eps / 2) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a = x2

Rabs (f x2 - f a) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
Rabs (f x2 - f a) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2

Rabs (f x2 - f a) <= eps / 2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2

a <> x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2
Rabs (x2 - a) < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2

Rabs (x2 - a) < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2

x2 - a < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2
x2 - a >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2

x2 < a + x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2
x2 - a >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2

x2 < a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2
a + h0 <= a + x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2
x2 - a >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2

a + h0 <= a + x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2
x2 - a >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2

h0 <= Rabs h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2
Rabs h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2
x2 - a >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2

Rabs h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2
x2 - a >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
H15:a <> x2
H16:x1 > 0
H17:forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2

x2 - a >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0
f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x3 : R, a <= x3 <= b -> continuity_pt f x3
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x3 : R => f a * (x3 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x3 : R, (True /\ a <> x3) /\ Rabs (x3 - a) < x1 -> Rabs (f x3 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
x2:R
H14:a < x2 < a + h0

f x2 - f a = f x2 + -1 * fct_cte (f a) x2
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

RiemannInt (RiemannInt_P14 a (a + h0) (eps / 2)) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

eps / 2 * (a + h0 - a) * Rabs (/ h0) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

eps / 2 * 1 < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
1 = (a + h0 - a) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

1 = (a + h0 - a) * Rabs (/ h0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

1 = (a + h0 - a) * / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
/ h0 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

/ h0 >= 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
H14:0 <= h0
H15:0 < h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
H14:0 <= h0
H15:0 = h0
0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
H14:0 <= h0
H15:0 = h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

RiemannInt (RiemannInt_P10 (-1) H13 (RiemannInt_P14 a (a + h0) (f a))) = RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

(RiemannInt H13 - RiemannInt (RiemannInt_P14 a (a + h0) (f a))) / h0 = RiemannInt H13 / h0 - RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

RiemannInt (RiemannInt_P14 a (a + h0) (f a)) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

f a * (a + h0 - a) / h0 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

a <= a + h0 -> RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

a + h0 <= b -> a <= a + h0 -> RiemannInt H13 = primitive h (FTC_P1 h C0) (a + h0) - primitive h (FTC_P1 h C0) a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
H14:a + h0 <= b
H15:a <= a + h0

RiemannInt H13 = match Rle_dec a (a + h0) with | left r => match Rle_dec (a + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (a + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (a + h0 - a) end - match Rle_dec a a with | left r => match Rle_dec a b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (a - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (a - a) end
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
H15:a <= a + h0
H14:a + h0 <= b

RiemannInt H13 = match Rle_dec a (a + h0) with | left r => RiemannInt (FTC_P1 h C0 r H14) | right _ => f a * (a + h0 - a) end - match Rle_dec a a with | left r => match Rle_dec a b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (a - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (a - a) end
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
H15:a <= a + h0
H14:a + h0 <= b
H16:a <= a

RiemannInt H13 = match Rle_dec a (a + h0) with | left r => RiemannInt (FTC_P1 h C0 r H14) | right _ => f a * (a + h0 - a) end - match Rle_dec a b with | left r0 => RiemannInt (FTC_P1 h C0 H16 r0) | right _ => f b * (a - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
H14:a + h0 <= b
H16:a <= a
H15:a <= a + h0

RiemannInt H13 = RiemannInt (FTC_P1 h C0 H15 H14) - match Rle_dec a b with | left r0 => RiemannInt (FTC_P1 h C0 H16 r0) | right _ => f b * (a - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
H14:a + h0 <= b
H16:a <= a
H15:a <= a + h0
hbis:a <= b

RiemannInt H13 = RiemannInt (FTC_P1 h C0 H15 H14) - RiemannInt (FTC_P1 h C0 H16 hbis)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

a + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)
a <= a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

a + h0 <= b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H0:a < b
H:a <= x
H1:x <= b
H2:a = x
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H3:derivable_pt_lim f_a a (f a)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
H6:continuity_pt f a
H7:0 < eps / 2
x1:R
H8:x1 > 0 /\ (forall x2 : R, (True /\ a <> x2) /\ Rabs (x2 - a) < x1 -> Rabs (f x2 - f a) < eps / 2)
del:=Rmin x0 (Rmin x1 (b - a)):R
H9:0 < del
h0:R
H10:h0 <> 0
H11:Rabs h0 < {| pos := del; cond_pos := H9 |}
Hnle:h0 >= 0
H12:a < a + h0
H13:Riemann_integrable f a (a + h0)

h0 <= - a + b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
(*****)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b

x = a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim f_a a (f a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (fct_cte (f a) * (id - fct_cte a)) a (0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (fct_cte (f a)) a 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
derivable_pt_lim (id - fct_cte a) a 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (id - fct_cte a) a 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (id - fct_cte a) a (1 - 0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim id a 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
derivable_pt_lim (fct_cte a) a 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R

derivable_pt_lim (fct_cte a) a 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R

0 * (id - fct_cte a)%F a + fct_cte (f a) a * 1 = f a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim f_b b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b))) b (f b + 0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (f b) * (id - fct_cte b) + fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b (f b + 0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (f b) * (id - fct_cte b)) b (f b)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (f b) * (id - fct_cte b)) b (0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (f b)) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (id - fct_cte b) b 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (id - fct_cte b) b 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (id - fct_cte b) b (1 - 0)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim id b 1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte b) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte b) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

0 * (id - fct_cte b)%F b + fct_cte (f b) b * 1 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

derivable_pt_lim (fct_cte (RiemannInt (FTC_P1 h C0 h (Rle_refl b)))) b 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R

f b + 0 = f b
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x0 : R => f a * (x0 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x0 : R => f b * (x0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)

derivable_pt_lim (primitive h (FTC_P1 h C0)) x (f x)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
x1:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
del:=Rmin x0 x1:R

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
x1:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
del:=Rmin x0 x1:R

0 < del
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
x1:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
x1:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
del:=Rmin x0 x1:R
Hle:x0 <= x1

0 < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
x1:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
del:=Rmin x0 x1:R
Hnle:~ x0 <= x1
0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
x1:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
x1:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
del:=Rmin x0 x1:R
Hnle:~ x0 <= x1

0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
x1:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h0 : R, h0 <> 0 -> Rabs h0 < x0 -> Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
x1:posreal
H6:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del

exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0

Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0

a + h0 < a
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a

Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a

Rabs ((match Rle_dec a (a + h0) with | left r => match Rle_dec (a + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (a + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (a + h0 - a) end - match Rle_dec a a with | left r => match Rle_dec a b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (a - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (a - a) end) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b

Rabs ((match Rle_dec a (a + h0) with | left r => match Rle_dec (a + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (a + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (a + h0 - a) end - match Rle_dec a a with | left r => RiemannInt (FTC_P1 h C0 r h') | right _ => f a * (a - a) end) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0

Rabs ((match Rle_dec a (a + h0) with | left r => match Rle_dec (a + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (a + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (a + h0 - a) end - match Rle_dec a a with | left r => RiemannInt (FTC_P1 h C0 r h') | right _ => f a * (a - a) end) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0

Rabs ((f a * (a + h0 - a) - match Rle_dec a a with | left r => RiemannInt (FTC_P1 h C0 r h') | right _ => f a * (a - a) end) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a

Rabs ((f a * (a + h0 - a) - RiemannInt (FTC_P1 h C0 H12 h')) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a

Rabs ((f a * (a + h0 - a) - f_a a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a
f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a

Rabs ((f_a (a + h0) - f_a a) / h0 - f a) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a
f_a (a + h0) = f a * (a + h0 - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a
f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a

Rabs h0 < x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a
f_a (a + h0) = f a * (a + h0 - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a
f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a

del <= x0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a
f_a (a + h0) = f a * (a + h0 - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a
f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a

f_a (a + h0) = f a * (a + h0 - a)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a
f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hle:h0 < 0
H10:a + h0 < a
h':a <= b
H11:~ a <= a + h0
H12:a <= a

f_a a = 0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0

Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0

a < a + h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:0 <= h0
H11:0 < h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:0 <= h0
H11:0 = h0
0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:0 <= h0
H11:0 = h0

0 < h0
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0
Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = a
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0

Rabs ((primitive h (FTC_P1 h C0) (x + h0) - primitive h (FTC_P1 h C0) x) / h0 - f x) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0

Rabs ((match Rle_dec a (b + h0) with | left r => match Rle_dec (b + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (b + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (b + h0 - a) end - match Rle_dec a b with | left r => match Rle_dec b b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (b - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (b - a) end) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0
hbis:a <= b

Rabs ((match Rle_dec a (b + h0) with | left r => match Rle_dec (b + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (b + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (b + h0 - a) end - match Rle_dec b b with | left r0 => RiemannInt (FTC_P1 h C0 hbis r0) | right _ => f b * (b - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0
hbis:a <= b
H11:b <= b

Rabs ((match Rle_dec a (b + h0) with | left r => match Rle_dec (b + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (b + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (b + h0 - a) end - RiemannInt (FTC_P1 h C0 hbis H11)) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0

Rabs ((match Rle_dec a (b + h0) with | left r => match Rle_dec (b + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 r r0) | right _ => f b * (b + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end | right _ => f a * (b + h0 - a) end - RiemannInt (FTC_P1 h C0 hbis H11)) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:a < a + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0

Rabs ((match Rle_dec (b + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 H12 r0) | right _ => f b * (b + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end - RiemannInt (FTC_P1 h C0 hbis H11)) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0

Rabs ((match Rle_dec (b + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 H12 r0) | right _ => f b * (b + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end - RiemannInt (FTC_P1 h C0 hbis H11)) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b

Rabs ((match Rle_dec (b + h0) b with | left r0 => RiemannInt (FTC_P1 h C0 H12 r0) | right _ => f b * (b + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) end - RiemannInt (FTC_P1 h C0 hbis H11)) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b

Rabs ((f b * (b + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) - RiemannInt (FTC_P1 h C0 hbis H11)) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b

Rabs ((f b * (b + h0 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)) - f_b b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b
f_b b = RiemannInt (FTC_P1 h C0 hbis H11)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b

Rabs ((f_b (b + h0) - f_b b) / h0 - f b) < eps
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b
f_b b = RiemannInt (FTC_P1 h C0 hbis H11)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b

Rabs h0 < x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b
f_b b = RiemannInt (FTC_P1 h C0 hbis H11)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b

del <= x1
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b
f_b b = RiemannInt (FTC_P1 h C0 hbis H11)
f:R -> R
a, b, x:R
h:a <= b
C0:forall x2 : R, a <= x2 <= b -> continuity_pt f x2
H:a <= x <= b
H0:a = b
H1:x = b
f_a:=fun x2 : R => f a * (x2 - a):R -> R
H2:derivable_pt_lim f_a a (f a)
f_b:=fun x2 : R => f b * (x2 - b) + RiemannInt (FTC_P1 h C0 h (Rle_refl b)):R -> R
H3:derivable_pt_lim f_b b (f b)
eps:R
H4:0 < eps
x0:posreal
H5:forall h1 : R, h1 <> 0 -> Rabs h1 < x0 -> Rabs ((f_a (a + h1) - f_a a) / h1 - f a) < eps
x1:posreal
H6:forall h1 : R, h1 <> 0 -> Rabs h1 < x1 -> Rabs ((f_b (b + h1) - f_b b) / h1 - f b) < eps
del:=Rmin x0 x1:R
H7:0 < del
h0:R
H8:h0 <> 0
H9:Rabs h0 < {| pos := del; cond_pos := H7 |}
Hnle:h0 >= 0
H10:b < b + h0
hbis:a <= b
H11:b <= b
H12:a <= b + h0
H13:~ b + h0 <= b

f_b b = RiemannInt (FTC_P1 h C0 hbis H11)
unfold f_b; unfold Rminus; rewrite Rplus_opp_r; rewrite Rmult_0_r; rewrite Rplus_0_l; apply RiemannInt_P5. Qed.

forall (f : R -> R) (a b : R) (h : a <= b) (C0 : forall x : R, a <= x <= b -> continuity_pt f x), antiderivative f (primitive h (FTC_P1 h C0)) a b

forall (f : R -> R) (a b : R) (h : a <= b) (C0 : forall x : R, a <= x <= b -> continuity_pt f x), antiderivative f (primitive h (FTC_P1 h C0)) a b
intro f; intros; unfold antiderivative; split; try assumption; intros; assert (H0 := RiemannInt_P28 h C0 H); assert (H1 : derivable_pt (primitive h (FTC_P1 h C0)) x); [ unfold derivable_pt; split with (f x); apply H0 | split with H1; symmetry ; apply derive_pt_eq_0; apply H0 ]. Qed.

forall (f : R -> R) (a b : R), a <= b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> {g : R -> R | antiderivative f g a b}

forall (f : R -> R) (a b : R), a <= b -> (forall x : R, a <= x <= b -> continuity_pt f x) -> {g : R -> R | antiderivative f g a b}
intros; split with (primitive H (FTC_P1 H H0)); apply RiemannInt_P29. Qed. Record C1_fun : Type := mkC1 {c1 :> R -> R; diff0 : derivable c1; cont1 : continuity (derive c1 diff0)}.

forall (f : C1_fun) (a b : R), a <= b -> antiderivative (derive f (diff0 f)) f a b

forall (f : C1_fun) (a b : R), a <= b -> antiderivative (derive f (diff0 f)) f a b
intro f; intros; unfold antiderivative; split; try assumption; intros; split with (diff0 f x); reflexivity. Qed.

forall (f : C1_fun) (a b : R), Riemann_integrable (derive f (diff0 f)) a b

forall (f : C1_fun) (a b : R), Riemann_integrable (derive f (diff0 f)) a b
intro f; intros; destruct (Rle_dec a b) as [Hle|Hnle]; [ apply continuity_implies_RiemannInt; try assumption; intros; apply (cont1 f) | assert (H : b <= a); [ auto with real | apply RiemannInt_P1; apply continuity_implies_RiemannInt; try assumption; intros; apply (cont1 f) ] ]. Qed.

forall (f : C1_fun) (a b : R) (pr : Riemann_integrable (derive f (diff0 f)) a b), a <= b -> RiemannInt pr = f b - f a

forall (f : C1_fun) (a b : R) (pr : Riemann_integrable (derive f (diff0 f)) a b), a <= b -> RiemannInt pr = f b - f a
f:C1_fun
a, b:R
pr:Riemann_integrable (derive f (diff0 f)) a b
H:a <= b

forall x : R, a <= x <= b -> continuity_pt (derive f (diff0 f)) x
f:C1_fun
a, b:R
pr:Riemann_integrable (derive f (diff0 f)) a b
H:a <= b
H0:forall x : R, a <= x <= b -> continuity_pt (derive f (diff0 f)) x
RiemannInt pr = f b - f a
f:C1_fun
a, b:R
pr:Riemann_integrable (derive f (diff0 f)) a b
H:a <= b
H0:forall x : R, a <= x <= b -> continuity_pt (derive f (diff0 f)) x

RiemannInt pr = f b - f a
rewrite (RiemannInt_P20 H (FTC_P1 H H0) pr); assert (H1 := RiemannInt_P29 H H0); assert (H2 := RiemannInt_P31 f H); elim (antiderivative_Ucte (derive f (diff0 f)) _ _ _ _ H1 H2); intros C H3; repeat rewrite H3; [ ring | split; [ right; reflexivity | assumption ] | split; [ assumption | right; reflexivity ] ]. Qed.

forall (f : C1_fun) (a b : R) (pr : Riemann_integrable (derive f (diff0 f)) a b), RiemannInt pr = f b - f a

forall (f : C1_fun) (a b : R) (pr : Riemann_integrable (derive f (diff0 f)) a b), RiemannInt pr = f b - f a
intro f; intros; destruct (Rle_dec a b) as [Hle|Hnle]; [ apply RiemannInt_P33; assumption | assert (H : b <= a); [ auto with real | assert (H0 := RiemannInt_P1 pr); rewrite (RiemannInt_P8 pr H0); rewrite (RiemannInt_P33 _ H0 H); ring ] ]. Qed. (* RiemannInt *)

forall (f : R -> R) (a b l u : R) (h : Riemann_integrable f a b), a <= b -> (forall x : R, a < x < b -> l <= f x <= u) -> l * (b - a) <= RiemannInt h <= u * (b - a)
f:R -> R
a, b, l, u:R
ri:Riemann_integrable f a b
ab:a <= b
intf:forall x : R, a < x < b -> l <= f x <= u

l * (b - a) <= RiemannInt ri <= u * (b - a)
f:R -> R
a, b, l, u:R
ri:Riemann_integrable f a b
ab:a <= b
intf:forall x : R, a < x < b -> l <= f x <= u

RiemannInt (RiemannInt_P14 a b l) <= RiemannInt ri <= RiemannInt (RiemannInt_P14 a b u)
split; apply RiemannInt_P19; try assumption; intros x intx; unfold fct_cte; destruct (intf x intx); assumption. Qed.

forall (f : R -> R) (a b k : R), Riemann_integrable f a b -> Riemann_integrable (fun x : R => k * f x) a b
f:R -> R
a, b, k:R
ri:Riemann_integrable f a b

Riemann_integrable (fun x : R => k * f x) a b
f:R -> R
a, b, k:R
ri:Riemann_integrable f a b

forall x : R, Rmin a b <= x <= Rmax a b -> 0 + k * f x = k * f x
f:R -> R
a, b, k:R
ri:Riemann_integrable f a b
Riemann_integrable (fun x : R => 0 + k * f x) a b
f:R -> R
a, b, k:R
ri:Riemann_integrable f a b

Riemann_integrable (fun x : R => 0 + k * f x) a b
apply (RiemannInt_P10 _ (RiemannInt_P14 _ _ 0) ri). Qed. Arguments Riemann_integrable_scal [f a b] k _ eps.

forall (f : R -> R) (a b : R), Riemann_integrable f a b -> Riemann_integrable (fun x : R => - f x) a b
ff:R -> R
a, b:R
h:Riemann_integrable ff a b

Riemann_integrable (fun x : R => - ff x) a b
ff:R -> R
a, b:R
h:Riemann_integrable ff a b

forall x : R, Rmin a b <= x <= Rmax a b -> -1 * ff x = - ff x
ff:R -> R
a, b:R
h:Riemann_integrable ff a b
Riemann_integrable (fun x : R => -1 * ff x) a b
ff:R -> R
a, b:R
h:Riemann_integrable ff a b

Riemann_integrable (fun x : R => -1 * ff x) a b
apply Riemann_integrable_scal; assumption. Qed. Arguments Riemann_integrable_Ropp [f a b] _ eps.