Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(*i Due to L.Thery i*)

(************************************************************)
(* Definitions of log and Rpower : R->R->R; main properties *)
(************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import Exp_prop.
Require Import Rsqrt_def.
Require Import R_sqrt.
Require Import Sqrt_reg.
Require Import MVT.
Require Import Ranalysis4.
Require Import Lra.
Local Open Scope R_scope.


forall (P : R -> Prop) (x y : R), P x -> P y -> P (Rmin x y)

forall (P : R -> Prop) (x y : R), P x -> P y -> P (Rmin x y)
intros P x y H1 H2; unfold Rmin; case (Rle_dec x y); intro; assumption. Qed.

exp 1 <= 3

exp 1 <= 3

exp 1 <> 0
exp_1:exp 1 <> 0
exp 1 <= 3
exp_1:exp 1 <> 0

exp 1 <= 3
exp_1:exp 1 <> 0

0 < / exp 1
exp_1:exp 1 <> 0
/ exp 1 * exp 1 <= / exp 1 * 3
exp_1:exp 1 <> 0

/ exp 1 * exp 1 <= / exp 1 * 3
exp_1:exp 1 <> 0

1 <= / exp 1 * 3
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

0 < / 3
exp_1:exp 1 <> 0
/ 3 * 1 <= / 3 * (/ exp 1 * 3)
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

/ 3 * 1 <= / 3 * (/ exp 1 * 3)
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

/ 3 <= 1 * / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

/ 3 <= exp (-1)
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)

/ 3 <= x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)

sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1) -> / 3 <= x
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
H0:1 * / 1 + -1 * 1 * / 1 + -1 * (-1 * 1) * / (1 + 1) + -1 * (-1 * (-1 * 1)) * / (1 + 1 + 1 + 1 + 1 + 1) <= x

/ 3 <= x
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
H0:1 * / 1 + -1 * 1 * / 1 + -1 * (-1 * 1) * / (1 + 1) + -1 * (-1 * (-1 * 1)) * / (1 + 1 + 1 + 1 + 1 + 1) <= x

1 * / 1 + -1 * 1 * / 1 + -1 * (-1 * 1) * / 2 + -1 * (-1 * (-1 * 1)) * / (2 + 1 + 1 + 1 + 1) <= x
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)

sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)

Un_decreasing (fun i : nat => / INR (fact i))
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat

0 < INR (fact n)
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat
INR (fact n) * / INR (fact (S n)) <= INR (fact n) * / INR (fact n)
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat

INR (fact n) * / INR (fact (S n)) <= INR (fact n) * / INR (fact n)
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat

0 < INR (fact (S n))
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat
INR (fact (S n)) * (INR (fact n) * / INR (fact (S n))) <= INR (fact (S n)) * (INR (fact n) * / INR (fact n))
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat

INR (fact (S n)) * (INR (fact n) * / INR (fact (S n))) <= INR (fact (S n)) * (INR (fact n) * / INR (fact n))
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat

INR (fact (S n)) * (INR (fact n) * / INR (fact (S n))) <= INR (fact (S n)) * 1
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat
INR (fact n) <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat

INR (fact n) * 1 <= INR (fact (S n))
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat
INR (fact (S n)) <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat
INR (fact n) <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat

INR (fact (S n)) <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat
INR (fact n) <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
n:nat

INR (fact n) <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)

Un_cv (fun i : nat => / INR (fact i)) 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (1 ^ n0 / INR (fact n0)) 0 < eps0
eps:R
H1:eps > 0
x0:nat
H2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (1 ^ n0 / INR (fact n0) - 0) < eps
n:nat
H3:(n >= x0)%nat

Rabs (1 ^ n / INR (fact n) - 0) < eps
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (1 ^ n0 / INR (fact n0)) 0 < eps0
eps:R
H1:eps > 0
x0:nat
H2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (1 ^ n0 / INR (fact n0) - 0) < eps
n:nat
H3:(n >= x0)%nat
1 ^ n / INR (fact n) = / INR (fact n)
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (1 ^ n0 / INR (fact n0)) 0 < eps0
eps:R
H1:eps > 0
x0:nat
H2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (1 ^ n0 / INR (fact n0) - 0) < eps
n:nat
H3:(n >= x0)%nat

1 ^ n / INR (fact n) = / INR (fact n)
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) x
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)

Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < eps0
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < eps
n:nat
H2:(n >= x0)%nat

R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n) x < eps
exp_1:exp 1 <> 0
x:R
e:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < eps0
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < eps
n:nat
H2:(n >= x0)%nat
sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n = sum_f_R0 (fun i : nat => (-1) ^ i * / INR (fact i)) n
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
x:R
e:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < eps0
H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < eps
n:nat
H2:(n >= x0)%nat

sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n = sum_f_R0 (fun i : nat => (-1) ^ i * / INR (fact i)) n
exp_1:exp 1 <> 0
exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

exp (-1) = / exp 1
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

exp 1 * exp (-1) = exp 1 * / exp 1
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

1 = 1
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

exp 1 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

exp 1 <> 0
exp_1:exp 1 <> 0
3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

3 <> 0
exp_1:exp 1 <> 0
exp 1 <> 0
exp_1:exp 1 <> 0

exp 1 <> 0
assumption. Qed. (******************************************************************)

Properties of Exp

(******************************************************************)


forall x y : R, x < y -> exp x < exp y

forall x y : R, x < y -> exp x < exp y
x, y:R
H:x < y

exp x < exp y
x, y:R
H:x < y

derivable exp
x, y:R
H:x < y
H0:derivable exp
exp x < exp y
x, y:R
H:x < y
H0:derivable exp

exp x < exp y
x, y:R
H:x < y
H0:derivable exp
H1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> strict_increasing exp

exp x < exp y
x, y:R
H:x < y
H0:derivable exp
H1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0

exp x < exp y
x, y:R
H:x < y
H0:derivable exp
H1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0

forall x0 : R, 0 < derive_pt exp x0 (H0 x0)
x, y:R
H:x < y
H0:derivable exp
H1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0
x < y
x, y:R
H:x < y
H0:derivable exp
H1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0
x0:R

0 < derive_pt exp x0 (H0 x0)
x, y:R
H:x < y
H0:derivable exp
H1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0
x < y
x, y:R
H:x < y
H0:derivable exp
H1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0
x0:R

0 < exp x0
x, y:R
H:x < y
H0:derivable exp
H1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0
x0:R
exp x0 = derive_pt exp x0 (H0 x0)
x, y:R
H:x < y
H0:derivable exp
H1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0
x < y
x, y:R
H:x < y
H0:derivable exp
H1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0
x0:R

exp x0 = derive_pt exp x0 (H0 x0)
x, y:R
H:x < y
H0:derivable exp
H1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0
x < y
x, y:R
H:x < y
H0:derivable exp
H1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0
x0:R

derivable_pt_lim exp x0 (exp x0)
x, y:R
H:x < y
H0:derivable exp
H1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0
x < y
x, y:R
H:x < y
H0:derivable exp
H1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0

x < y
apply H. Qed.

forall x y : R, exp x < exp y -> x < y

forall x y : R, exp x < exp y -> x < y
x, y:R
H:exp x < exp y
H1:x < y

x < y
x, y:R
H:exp x < exp y
H1:x = y
x < y
x, y:R
H:exp x < exp y
H1:x > y
x < y
x, y:R
H:exp x < exp y
H1:x = y

x < y
x, y:R
H:exp x < exp y
H1:x > y
x < y
x, y:R
H:exp x < exp y
H1:x > y

x < y
x, y:R
H:exp x < exp y
H1:x > y
H2:exp y < exp x

x < y
elim (Rlt_irrefl _ (Rlt_trans _ _ _ H H2)). Qed.

forall x : R, 0 < x -> 1 + x < exp x

forall x : R, 0 < x -> 1 + x < exp x
x:R
H:0 < x
H0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < x
x0:R
H1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < x
H2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)
H3:0 < x0 < x

- exp 0 + (1 + x) < exp x0 * x
x:R
H:0 < x
H0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < x
x0:R
H1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < x
H2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)
H3:0 < x0 < x
exp x0 = derive_pt exp x0 (derivable_exp x0)
x:R
H:0 < x
H0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < x
x0:R
H1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < x
H2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)
H3:0 < x0 < x

0 < x
x:R
H:0 < x
H0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < x
x0:R
H1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < x
H2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)
H3:0 < x0 < x
1 < exp x0
x:R
H:0 < x
H0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < x
x0:R
H1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < x
H2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)
H3:0 < x0 < x
exp x0 = derive_pt exp x0 (derivable_exp x0)
x:R
H:0 < x
H0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < x
x0:R
H1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < x
H2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)
H3:0 < x0 < x

1 < exp x0
x:R
H:0 < x
H0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < x
x0:R
H1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < x
H2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)
H3:0 < x0 < x
exp x0 = derive_pt exp x0 (derivable_exp x0)
x:R
H:0 < x
H0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < x
x0:R
H1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < x
H2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)
H3:0 < x0 < x

exp x0 = derive_pt exp x0 (derivable_exp x0)
symmetry ; apply derive_pt_eq_0; apply derivable_pt_lim_exp. Qed.

forall y : R, 1 <= y -> {z : R | y = exp z}

forall y : R, 1 <= y -> {z : R | y = exp z}
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R

{z : R | y = exp z}
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y

{z : R | y = exp z}
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0

{z : R | y = exp z}
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
f 0 <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f

{z : R | y = exp z}
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
continuity f
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
f 0 <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f
H3:0 <= f y

{z : R | y = exp z}
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f
0 <= f y
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
continuity f
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
f 0 <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f
H3:0 <= f y
H4:f 0 * f y <= 0

{z : R | y = exp z}
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f
H3:0 <= f y
f 0 * f y <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f
0 <= f y
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
continuity f
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
f 0 <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f
H3:0 <= f y

f 0 * f y <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f
0 <= f y
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
continuity f
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
f 0 <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f

0 <= f y
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
continuity f
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
f 0 <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f

y + 0 < 1 + y
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f
1 + y < y + (exp y - y)
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
continuity f
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
f 0 <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
H2:continuity f

1 + y < y + (exp y - y)
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0
continuity f
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
f 0 <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
H1:f 0 <= 0

continuity f
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y
f 0 <= 0
y:R
H:1 <= y
f:=fun x : R => exp x - y:R -> R
H0:0 < y

f 0 <= 0
unfold f; rewrite exp_0; apply Rplus_le_reg_l with y; rewrite Rplus_0_r; replace (y + (1 - y)) with 1; [ apply H | ring ]. Qed. (**********)

forall y : R, 0 < y -> {z : R | y = exp z}

forall y : R, 0 < y -> {z : R | y = exp z}
y:R
H:0 < y
Hle:1 <= y

{z : R | y = exp z}
y:R
H:0 < y
Hnle:~ 1 <= y
{z : R | y = exp z}
y:R
H:0 < y
Hnle:~ 1 <= y

{z : R | y = exp z}
y:R
H:0 < y
Hnle:~ 1 <= y

1 <= / y
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
{z : R | y = exp z}
y:R
H:0 < y
Hnle:~ 1 <= y

0 < y
y:R
H:0 < y
Hnle:~ 1 <= y
y * 1 <= y * / y
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
{z : R | y = exp z}
y:R
H:0 < y
Hnle:~ 1 <= y

y * 1 <= y * / y
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
{z : R | y = exp z}
y:R
H:0 < y
Hnle:~ 1 <= y

y * 1 <= 1
y:R
H:0 < y
Hnle:~ 1 <= y
y <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
{z : R | y = exp z}
y:R
H:0 < y
Hnle:~ 1 <= y

y <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
{z : R | y = exp z}
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y

{z : R | y = exp z}
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x

exp x / y * y = exp x / y * exp (- x)
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x
exp x / y <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x

exp x * 1 = exp x * / y * exp (- x)
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x
y <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x
exp x / y <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x

y <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x
exp x / y <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x

exp x / y <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x

exp x <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x
/ y <> 0
y:R
H:0 < y
Hnle:~ 1 <= y
H0:1 <= / y
x:R
p:/ y = exp x

/ y <> 0
apply Rinv_neq_0_compat; red; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H). Qed. (* Definition of log R+* -> R *) Definition Rln (y:posreal) : R := let (a,_) := ln_exists (pos y) (cond_pos y) in a. (* Extension on R *) Definition ln (x:R) : R := match Rlt_dec 0 x with | left a => Rln (mkposreal x a) | right a => 0 end.

forall x : R, 0 < x -> exp (ln x) = x

forall x : R, 0 < x -> exp (ln x) = x
x:R
H:0 < x

exp (Rln {| pos := x; cond_pos := H |}) = x
x:R
H:0 < x
x0:R
Hex:{| pos := x; cond_pos := H |} = exp x0

exp x0 = x
symmetry; apply Hex. Qed.

forall x y : R, exp x = exp y -> x = y

forall x y : R, exp x = exp y -> x = y
intros x y H; case (Rtotal_order x y); [ intros H1 | intros [H1| H1] ]; auto; assert (H2 := exp_increasing _ _ H1); rewrite H in H2; elim (Rlt_irrefl _ H2). Qed.

forall x : R, exp (- x) = / exp x

forall x : R, exp (- x) = / exp x
x:R

exp x <> 0
x:R
H:exp x <> 0
exp (- x) = / exp x
x:R
H:exp x <> 0

exp (- x) = / exp x
x:R
H:exp x <> 0

exp x * exp (- x) = exp x * / exp x
x:R
H:exp x <> 0
exp x <> 0
x:R
H:exp x <> 0

1 = exp x * / exp x
x:R
H:exp x <> 0
exp x <> 0
x:R
H:exp x <> 0

exp x <> 0
x:R
H:exp x <> 0
exp x <> 0
x:R
H:exp x <> 0

exp x <> 0
apply H. Qed. (******************************************************************)

Properties of Ln

(******************************************************************)


forall x y : R, 0 < x -> x < y -> ln x < ln y

forall x y : R, 0 < x -> x < y -> ln x < ln y
x, y:R
H:0 < x
H0:x < y

exp (ln x) < exp (ln y)
x, y:R
H:0 < x
H0:x < y

x < y
x, y:R
H:0 < x
H0:x < y
0 < y
x, y:R
H:0 < x
H0:x < y
0 < x
x, y:R
H:0 < x
H0:x < y

0 < y
x, y:R
H:0 < x
H0:x < y
0 < x
x, y:R
H:0 < x
H0:x < y

0 < x
apply H. Qed.

forall x : R, ln (exp x) = x

forall x : R, ln (exp x) = x
x:R

exp (ln (exp x)) = exp x
x:R

0 < exp x
apply exp_pos. Qed.

ln 1 = 0

ln 1 = 0
rewrite <- exp_0; rewrite ln_exp; reflexivity. Qed.

forall x y : R, 0 < x -> 0 < y -> ln x < ln y -> x < y

forall x y : R, 0 < x -> 0 < y -> ln x < ln y -> x < y
x, y:R
H:0 < x
H0:0 < y
H1:ln x < ln y

exp (ln x) < exp (ln y)
x, y:R
H:0 < x
H0:0 < y
H1:ln x < ln y
0 < y
x, y:R
H:0 < x
H0:0 < y
H1:ln x < ln y
0 < x
x, y:R
H:0 < x
H0:0 < y
H1:ln x < ln y

0 < y
x, y:R
H:0 < x
H0:0 < y
H1:ln x < ln y
0 < x
x, y:R
H:0 < x
H0:0 < y
H1:ln x < ln y

0 < x
assumption. Qed.

forall x y : R, 0 < x -> 0 < y -> ln x = ln y -> x = y

forall x y : R, 0 < x -> 0 < y -> ln x = ln y -> x = y
x, y:R
H:0 < x
H0:0 < y
H'0:ln x = ln y
H1:x < y

x = y
x, y:R
H:0 < x
H0:0 < y
H'0:ln x = ln y
H1:x > y
x = y
x, y:R
H:0 < x
H0:0 < y
H'0:ln x = ln y
H1:x > y

x = y
assert (H2 := ln_increasing _ _ H0 H1); rewrite H'0 in H2; elim (Rlt_irrefl _ H2). Qed.

forall x y : R, 0 < x -> 0 < y -> ln (x * y) = ln x + ln y

forall x y : R, 0 < x -> 0 < y -> ln (x * y) = ln x + ln y
x, y:R
H:0 < x
H0:0 < y

exp (ln (x * y)) = exp (ln x + ln y)
x, y:R
H:0 < x
H0:0 < y

exp (ln (x * y)) = exp (ln x) * exp (ln y)
x, y:R
H:0 < x
H0:0 < y

x * y = x * y
x, y:R
H:0 < x
H0:0 < y
0 < y
x, y:R
H:0 < x
H0:0 < y
0 < x
x, y:R
H:0 < x
H0:0 < y
0 < x * y
x, y:R
H:0 < x
H0:0 < y

0 < y
x, y:R
H:0 < x
H0:0 < y
0 < x
x, y:R
H:0 < x
H0:0 < y
0 < x * y
x, y:R
H:0 < x
H0:0 < y

0 < x
x, y:R
H:0 < x
H0:0 < y
0 < x * y
x, y:R
H:0 < x
H0:0 < y

0 < x * y
apply Rmult_lt_0_compat; assumption. Qed.

forall x : R, 0 < x -> ln (/ x) = - ln x

forall x : R, 0 < x -> ln (/ x) = - ln x
x:R
H:0 < x

/ x = / x
x:R
H:0 < x
0 < x
x:R
H:0 < x
0 < / x
x:R
H:0 < x

0 < x
x:R
H:0 < x
0 < / x
x:R
H:0 < x

0 < / x
apply Rinv_0_lt_compat; assumption. Qed.

forall y : R, 0 < y -> continue_in ln (fun x : R => 0 < x) y

forall y : R, 0 < y -> continue_in ln (fun x : R => 0 < x) y
y:R
H:0 < y

continue_in ln (fun x : R => 0 < x) y
y:R
H:0 < y
eps:R
Heps:eps > 0

exists alp : R, alp > 0 /\ (forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < alp -> dist R_met (ln x) (ln y) < eps)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps

exists alp : R, alp > 0 /\ (forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < alp -> dist R_met (ln x) (ln y) < eps)
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

exists alp : R, alp > 0 /\ (forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < alp -> dist R_met (ln x) (ln y) < eps)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) > 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

0 < y * (exp eps - 1)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
0 < y * (1 - exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

0 < y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
0 < exp eps - 1
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
0 < y * (1 - exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

0 < exp eps - 1
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
0 < y * (1 - exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

1 + 0 < 1 + (exp eps - 1)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
0 < y * (1 - exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

0 < y * (1 - exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

0 < y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
0 < 1 - exp (- eps)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

0 < 1 - exp (- eps)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

exp (- eps) + 0 < exp (- eps) + (1 - exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1

forall x : R, D_x (fun x0 : R => 0 < x0) y x /\ Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> Rabs (ln x - ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))

Rabs (ln x - ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))

y * (x * / y) = x -> Rabs (ln x - ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x

Rabs (ln x - ln y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x

Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

- ln (x * / y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

- eps < ln (x * / y)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

exp (- eps) < exp (ln (x * / y))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

exp (- eps) < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

0 < y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
y * exp (- eps) < y * (x * / y)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

y * exp (- eps) < y * (x * / y)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

y * exp (- eps) < x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

- x < - (y * exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

y + - x < y + - (y * exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

y + - x < y * (1 - exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

Rabs (x - y) < y * (1 - exp (- eps))
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
Rabs (x - y) = y + - x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

Rabs (x - y) = y + - x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

x - y < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

ln (x * / y) < 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

ln (x * / y) < ln 1
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
x * / y < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

x * / y < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

0 < y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y
y * (x * / y) < y * 1
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x < y

y * (x * / y) < y * 1
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y

Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y

Rabs (ln 1) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y
y <> 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x = y

y <> 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

Rabs (ln (x * / y)) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

ln (x * / y) < eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

exp (ln (x * / y)) < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

x * / y < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

0 < y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
y * (x * / y) < y * exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

y * (x * / y) < y * exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

x < y * exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

- y + x < - y + y * exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

- y + x < y * (exp eps - 1)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

Rabs (x - y) < y * (exp eps - 1)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
Rabs (x - y) = - y + x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

Rabs (x - y) = - y + x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

x - y >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

0 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

ln (x * / y) >= 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

ln (x * / y) >= ln 1
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

0 < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
1 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

1 < x * / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

0 < y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y
y * 1 < y * (x * / y)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
Hxy:x > y

y * 1 < y * (x * / y)
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x

ln (x * / y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x

ln x + ln (/ y) = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
0 < x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
0 < / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x

ln x + - ln y = ln x - ln y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
0 < y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
0 < x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
0 < / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x

0 < y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
0 < x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
0 < / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x

0 < x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x
0 < / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
Hxyy:y * (x * / y) = x

0 < / y
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))

y * (x * / y) = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))

1 * x = x
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))
y <> 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
H2:exp (- eps) < 1
x:R
H3:0 < x
H4:y <> x
H5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))

y <> 0
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps

exp (- eps) < 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps

0 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps
exp eps * exp (- eps) < exp eps * 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0
H1:1 < exp eps

exp eps * exp (- eps) < exp eps * 1
y:R
H:0 < y
eps:R
Heps:eps > 0
1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0

1 < exp eps
y:R
H:0 < y
eps:R
Heps:eps > 0

exp 0 < exp eps
apply exp_increasing; apply Heps. Qed. (******************************************************************)

Definition of Rpower

(******************************************************************)

Definition Rpower (x y:R) := exp (y * ln x).

Local Infix "^R" := Rpower (at level 30, right associativity) : R_scope.

(******************************************************************)

Properties of Rpower

(******************************************************************)
Note: Rpower is prolongated to 1 on negative real numbers and it thus does not extend integer power. The next two lemmas, which hold for integer power, accidentally hold on negative real numbers as a side effect of the default value taken on negative real numbers. Contrastingly, the lemmas that do not hold for the integer power of a negative number are stated for Rpower on the positive numbers only (even if they accidentally hold due to the default value of Rpower on the negative side, as it is the case for Rpower_O).

forall x y z : R, z ^R (x + y) = z ^R x * z ^R y

forall x y z : R, z ^R (x + y) = z ^R x * z ^R y
x, y, z:R

exp ((x + y) * ln z) = exp (x * ln z) * exp (y * ln z)
rewrite Rmult_plus_distr_r; rewrite exp_plus; auto. Qed.

forall x y z : R, (x ^R y) ^R z = x ^R (y * z)

forall x y z : R, (x ^R y) ^R z = x ^R (y * z)
x, y, z:R

exp (z * ln (exp (y * ln x))) = exp (y * z * ln x)
x, y, z:R

exp (z * (y * ln x)) = exp (y * z * ln x)
x, y, z:R

exp (y * z * ln x) = exp (y * z * ln x)
x, y, z:R
y * z * ln x = z * (y * ln x)
x, y, z:R

y * z * ln x = z * (y * ln x)
ring. Qed.

forall x : R, 0 < x -> x ^R 0 = 1

forall x : R, 0 < x -> x ^R 0 = 1
x:R

exp (0 * ln x) = 1
rewrite Rmult_0_l; apply exp_0. Qed.

forall x : R, 0 < x -> x ^R 1 = x

forall x : R, 0 < x -> x ^R 1 = x
x:R
H:0 < x

exp (1 * ln x) = x
rewrite Rmult_1_l; apply exp_ln; apply H. Qed.

forall (n : nat) (x : R), 0 < x -> x ^R INR n = x ^ n

forall (n : nat) (x : R), 0 < x -> x ^R INR n = x ^ n
n:nat

forall x : R, 0 < x -> x ^R 0 = 1
n:nat
forall n0 : nat, (forall x : R, 0 < x -> x ^R INR n0 = x ^ n0) -> forall x : R, 0 < x -> x ^R match n0 with | 0%nat => 1 | S _ => INR n0 + 1 end = x * x ^ n0
n:nat

forall n0 : nat, (forall x : R, 0 < x -> x ^R INR n0 = x ^ n0) -> forall x : R, 0 < x -> x ^R match n0 with | 0%nat => 1 | S _ => INR n0 + 1 end = x * x ^ n0
n, n1:nat

(forall x : R, 0 < x -> x ^R INR 0 = x ^ 0) -> forall x : R, 0 < x -> x ^R 1 = x * x ^ 0
n, n1:nat
forall n0 : nat, (forall x : R, 0 < x -> x ^R INR (S n0) = x ^ S n0) -> forall x : R, 0 < x -> x ^R (INR (S n0) + 1) = x * x ^ S n0
n, n1:nat

forall n0 : nat, (forall x : R, 0 < x -> x ^R INR (S n0) = x ^ S n0) -> forall x : R, 0 < x -> x ^R (INR (S n0) + 1) = x * x ^ S n0
intros n0 H x H0; rewrite Rpower_plus; rewrite H; try rewrite Rpower_1; try apply Rmult_comm || assumption. Qed.

forall x y z : R, 1 < x -> y < z -> x ^R y < x ^R z

forall x y z : R, 1 < x -> y < z -> x ^R y < x ^R z
x, y, z:R
H:1 < x
H1:y < z

x ^R y < x ^R z
x, y, z:R
H:1 < x
H1:y < z

exp (y * ln x) < exp (z * ln x)
x, y, z:R
H:1 < x
H1:y < z

y * ln x < z * ln x
x, y, z:R
H:1 < x
H1:y < z

0 < ln x
x, y, z:R
H:1 < x
H1:y < z
y < z
x, y, z:R
H:1 < x
H1:y < z

0 < 1
x, y, z:R
H:1 < x
H1:y < z
1 < x
x, y, z:R
H:1 < x
H1:y < z
y < z
x, y, z:R
H:1 < x
H1:y < z

1 < x
x, y, z:R
H:1 < x
H1:y < z
y < z
x, y, z:R
H:1 < x
H1:y < z

y < z
apply H1. Qed.

forall x : R, 0 < x -> x ^R (/ 2) = sqrt x

forall x : R, 0 < x -> x ^R (/ 2) = sqrt x
x:R
H:0 < x

x ^R (/ 2) = sqrt x
x:R
H:0 < x

0 < x ^R (/ 2)
x:R
H:0 < x
0 < sqrt x
x:R
H:0 < x
ln (x ^R (/ 2)) = ln (sqrt x)
x:R
H:0 < x

0 < sqrt x
x:R
H:0 < x
ln (x ^R (/ 2)) = ln (sqrt x)
x:R
H:0 < x

ln (x ^R (/ 2)) = ln (sqrt x)
x:R
H:0 < x

INR 2 * ln (x ^R (/ 2)) = INR 2 * ln (sqrt x)
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

exp (INR 2 * ln (x ^R (/ 2))) = exp (INR 2 * ln (sqrt x))
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

exp (INR 2 * ln (x ^R (/ 2))) = exp (INR 2 * ln (sqrt x))
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

(x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2 -> exp (INR 2 * ln (x ^R (/ 2))) = exp (INR 2 * ln (sqrt x))
x:R
H:0 < x
(x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

(x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

x ^R (/ INR 2 * INR 2) = sqrt x ^R INR 2
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

x ^R 1 = sqrt x ^R INR 2
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

x ^R INR 1 = sqrt x ^R INR 2
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

x * 1 = sqrt x * (sqrt x * 1)
x:R
H:0 < x
0 < sqrt x
x:R
H:0 < x
0 < x
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

sqrt x * sqrt x * 1 = sqrt x * (sqrt x * 1)
x:R
H:0 < x
0 < sqrt x
x:R
H:0 < x
0 < x
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

0 < sqrt x
x:R
H:0 < x
0 < x
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

0 < x
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

INR 2 <> 0
x:R
H:0 < x
INR 2 <> 0
x:R
H:0 < x

INR 2 <> 0
apply not_O_INR; discriminate. Qed.

forall x y : R, x ^R (- y) = / x ^R y

forall x y : R, x ^R (- y) = / x ^R y

forall x y : R, exp (- y * ln x) = / exp (y * ln x)
x, y:R

exp (- (y * ln x)) = / exp (y * ln x)
apply exp_Ropp. Qed.
x:R
z:Z

0 < x -> powerRZ x z = x ^R IZR z
x:R
z:Z

0 < x -> powerRZ x z = x ^R IZR z
x:R
z:Z
Hx:0 < x

powerRZ x z = x ^R IZR z
x:R
z:Z
Hx:0 < x
H:x <> 0

powerRZ x z = x ^R IZR z
x:R
z:Z
Hx:0 < x
H:x <> 0
e:z = 0%Z

powerRZ x 0 = x ^R 0
x:R
z:Z
Hx:0 < x
H:x <> 0
n:nat
e:z = Z.of_nat n
powerRZ x (Z.of_nat n) = x ^R IZR (Z.of_nat n)
x:R
z:Z
Hx:0 < x
H:x <> 0
n:nat
e:z = (- Z.of_nat n)%Z
powerRZ x (- Z.of_nat n) = x ^R IZR (- Z.of_nat n)
x:R
z:Z
Hx:0 < x
H:x <> 0
e:z = 0%Z

powerRZ x 0 = x ^R 0
now rewrite Rpower_O.
x:R
z:Z
Hx:0 < x
H:x <> 0
n:nat
e:z = Z.of_nat n

powerRZ x (Z.of_nat n) = x ^R IZR (Z.of_nat n)
x:R
z:Z
Hx:0 < x
H:x <> 0
n:nat
e:z = Z.of_nat n

x ^R INR n = x ^R IZR (Z.of_nat n)
now rewrite INR_IZR_INZ.
x:R
z:Z
Hx:0 < x
H:x <> 0
n:nat
e:z = (- Z.of_nat n)%Z

powerRZ x (- Z.of_nat n) = x ^R IZR (- Z.of_nat n)
x:R
z:Z
Hx:0 < x
H:x <> 0
n:nat
e:z = (- Z.of_nat n)%Z

powerRZ x (- Z.of_nat n) = / x ^R IZR (Z.of_nat n)
x:R
z:Z
Hx:0 < x
H:x <> 0
n:nat
e:z = (- Z.of_nat n)%Z

/ powerRZ x (Z.of_nat n) = / x ^R IZR (Z.of_nat n)
now rewrite <- pow_powerRZ, <- INR_IZR_INZ, Rpower_pow. Qed.

forall e n m : R, 1 <= e -> n <= m -> e ^R n <= e ^R m

forall e n m : R, 1 <= e -> n <= m -> e ^R n <= e ^R m
e, n, m:R
H:1 < e
H1:n <= m

e ^R n <= e ^R m
e, n, m:R
H:1 = e
H1:n <= m
e ^R n <= e ^R m
e, n, m:R
H:1 < e
H1:n <= m

n < m -> e ^R n <= e ^R m
e, n, m:R
H:1 < e
H1:n <= m
n = m -> e ^R n <= e ^R m
e, n, m:R
H:1 = e
H1:n <= m
e ^R n <= e ^R m
e, n, m:R
H:1 < e
H1:n <= m

n = m -> e ^R n <= e ^R m
e, n, m:R
H:1 = e
H1:n <= m
e ^R n <= e ^R m
e, n, m:R
H:1 = e
H1:n <= m

e ^R n <= e ^R m
now rewrite <- H; unfold Rpower; rewrite ln_1, !Rmult_0_r; apply Rle_refl. Qed.

/ 2 < ln 2

/ 2 < ln 2

0 < 2

2 * / 2 < 2 * ln 2

2 * / 2 < 2 * ln 2

1 < 2 * ln 2

2 <> 0

exp 1 < exp (2 * ln 2)

2 <> 0

3 < exp (2 * ln 2)

2 <> 0

3 < 2 ^R (1 + 1)

2 <> 0

3 < 2 * 2

0 < 2

2 <> 0

0 < 2

2 <> 0

2 <> 0
discrR. Qed. (*****************************************)

Differentiability of Ln and Rpower

(*****************************************)


forall (f g : R -> R) (D : R -> Prop) (l x : R), (forall x0 : R, D x0 -> f x0 = g x0) -> limit1_in f D l x -> limit1_in g D l x

forall (f g : R -> R) (D : R -> Prop) (l x : R), (forall x0 : R, D x0 -> f x0 = g x0) -> limit1_in f D l x -> limit1_in g D l x
f, g:R -> R
D:R -> Prop
l, x:R
H:forall x0 : R, D x0 -> f x0 = g x0

(forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps)) -> forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) l < eps)
f, g:R -> R
D:R -> Prop
l, x:R
H:forall x0 : R, D x0 -> f x0 = g x0
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps0)
eps:R
H1:eps > 0

forall x0 : R, x0 > 0 /\ (forall x1 : Base R_met, D x1 /\ dist R_met x1 x < x0 -> dist R_met (f x1) l < eps) -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ dist R_met x1 x < alp -> dist R_met (g x1) l < eps)
f, g:R -> R
D:R -> Prop
l, x:R
H:forall x1 : R, D x1 -> f x1 = g x1
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ dist R_met x1 x < alp -> dist R_met (f x1) l < eps0)
eps:R
H1:eps > 0
x0:R
H2:x0 > 0
H3:forall x1 : Base R_met, D x1 /\ dist R_met x1 x < x0 -> dist R_met (f x1) l < eps

forall x1 : Base R_met, D x1 /\ dist R_met x1 x < x0 -> dist R_met (g x1) l < eps
intros x1 [H4 H5]; rewrite <- H; auto. Qed.

forall (f : R -> R) (D D1 : R -> Prop) (l x : R), (forall x0 : R, D1 x0 -> D x0) -> limit1_in f D l x -> limit1_in f D1 l x

forall (f : R -> R) (D D1 : R -> Prop) (l x : R), (forall x0 : R, D1 x0 -> D x0) -> limit1_in f D l x -> limit1_in f D1 l x
f:R -> R
D, D1:R -> Prop
l, x:R
H:forall x0 : R, D1 x0 -> D x0

(forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps)) -> forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D1 x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps)
f:R -> R
D, D1:R -> Prop
l, x:R
H:forall x0 : R, D1 x0 -> D x0
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps0)
eps:R
H1:eps > 0

forall x0 : R, x0 > 0 /\ (forall x1 : Base R_met, D x1 /\ dist R_met x1 x < x0 -> dist R_met (f x1) l < eps) -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D1 x1 /\ dist R_met x1 x < alp -> dist R_met (f x1) l < eps)
f:R -> R
D, D1:R -> Prop
l, x:R
H:forall x0 : R, D1 x0 -> D x0
H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps0)
eps:R
H1:eps > 0
alpha:R
H2:alpha > 0
H3:forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alpha -> dist R_met (f x0) l < eps

forall x0 : Base R_met, D1 x0 /\ dist R_met x0 x < alpha -> dist R_met (f x0) l < eps
intros d [H4 H5]; apply H3; split; auto. Qed.

forall x y : R, x <> 0 -> y <> 0 -> / (x / y) = y / x

forall x y : R, x <> 0 -> y <> 0 -> / (x / y) = y / x
x, y:R
H1:x <> 0
H2:y <> 0

/ x * / / y = y * / x
x, y:R
H1:x <> 0
H2:y <> 0
x <> 0
x, y:R
H1:x <> 0
H2:y <> 0
/ y <> 0
x, y:R
H1:x <> 0
H2:y <> 0

/ x * y = y * / x
x, y:R
H1:x <> 0
H2:y <> 0
y <> 0
x, y:R
H1:x <> 0
H2:y <> 0
x <> 0
x, y:R
H1:x <> 0
H2:y <> 0
/ y <> 0
x, y:R
H1:x <> 0
H2:y <> 0

y <> 0
x, y:R
H1:x <> 0
H2:y <> 0
x <> 0
x, y:R
H1:x <> 0
H2:y <> 0
/ y <> 0
x, y:R
H1:x <> 0
H2:y <> 0

x <> 0
x, y:R
H1:x <> 0
H2:y <> 0
/ y <> 0
x, y:R
H1:x <> 0
H2:y <> 0

/ y <> 0
apply Rinv_neq_0_compat; assumption. Qed.

forall y : R, 0 < y -> D_in ln Rinv (fun x : R => 0 < x) y

forall y : R, 0 < y -> D_in ln Rinv (fun x : R => 0 < x) y
y:R
Hy:0 < y

limit1_in (fun x : R => (ln x - ln y) / (x - y)) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y

forall x : R, D_x (fun x0 : R => 0 < x0) y x -> / ((exp (ln x) - exp (ln y)) / (ln x - ln y)) = (ln x - ln y) / (x - y)
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x

/ ((x - y) / (ln x - ln y)) = (ln x - ln y) / (x - y)
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x

/ (x - y) * / / (ln x - ln y) = (ln x - ln y) * / (x - y)
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
x - y <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
/ (ln x - ln y) <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x

/ (x - y) * (ln x - ln y) = (ln x - ln y) * / (x - y)
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
ln x - ln y <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
x - y <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
/ (ln x - ln y) <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x

ln x - ln y <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
x - y <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
/ (ln x - ln y) <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x

ln x <> ln y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
x - y <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
/ (ln x - ln y) <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
H2:ln x = ln y

y = x
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
x - y <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
/ (ln x - ln y) <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x

x - y <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
/ (ln x - ln y) <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x

/ (ln x - ln y) <> 0
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x

0 < y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x
0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y
x:R
HD1:0 < x
HD2:y <> x

0 < x
y:R
Hy:0 < y
limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y

limit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) y
y:R
Hy:0 < y

limit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (D_x (fun x : R => 0 < x) y) y y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y

forall x : R, D_x (fun x0 : R => 0 < x0) y x -> Dgf (D_x (fun x0 : R => 0 < x0) y) (D_x (fun _ : R => True) (ln y)) ln x
y:R
Hy:0 < y
limit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
x:R
H1:0 < x
H2:y <> x

D_x (fun x0 : R => 0 < x0) y x
y:R
Hy:0 < y
x:R
H1:0 < x
H2:y <> x
D_x (fun _ : R => True) (ln y) (ln x)
y:R
Hy:0 < y
limit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
x:R
H1:0 < x
H2:y <> x

D_x (fun _ : R => True) (ln y) (ln x)
y:R
Hy:0 < y
limit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
x:R
H1:0 < x
H2:y <> x

ln y <> ln x
y:R
Hy:0 < y
limit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y

limit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y

limit1_in ln (D_x (fun x : R => 0 < x) y) (ln y) y
y:R
Hy:0 < y
limit1_in (fun x : R => (exp x - exp (ln y)) / (x - ln y)) (D_x (fun _ : R => True) (ln y)) y (ln y)
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y

limit1_in (fun x : R => (exp x - exp (ln y)) / (x - ln y)) (D_x (fun _ : R => True) (ln y)) y (ln y)
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps

x > 0
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
forall x0 : R, D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x -> Rabs ((exp x0 - exp (ln y)) / (x0 - ln y) - y) < eps
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps

forall x0 : R, D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x -> Rabs ((exp x0 - exp (ln y)) / (x0 - ln y) - y) < eps
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x

Rabs ((exp x0 - exp (ln y)) / (x0 - ln y) - exp (ln y)) < eps
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x
0 < y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x

Rabs ((exp (ln y + (x0 - ln y)) - exp (ln y)) / (x0 - ln y) - exp (ln y)) < eps
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x
0 < y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x

x0 - ln y <> 0
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x
Rabs (x0 - ln y) < x
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x
0 < y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x

Rabs (x0 - ln y) < x
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x
0 < y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0
eps:R
H:eps > 0
x:posreal
H1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps
x0:R
H2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x

0 < y
y:R
Hy:0 < y
y <> 0
y:R
Hy:0 < y

y <> 0
red; intro; rewrite H in Hy; elim (Rlt_irrefl _ Hy). Qed.

forall x : R, 0 < x -> derivable_pt_lim ln x (/ x)

forall x : R, 0 < x -> derivable_pt_lim ln x (/ x)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R

0 < alp
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((ln (x + h) - ln x) / h - / x) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
r:x0 <= x / 2

0 < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
n:~ x0 <= x / 2
0 < x / 2
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((ln (x + h) - ln x) / h - / x) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
n:~ x0 <= x / 2

0 < x / 2
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((ln (x + h) - ln x) / h - / x) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((ln (x + h) - ln x) / h - / x) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}

Rabs ((ln (x + h) - ln x) / (x + h - x) - / x) < eps
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}

D_x (fun x1 : R => 0 < x1) x (x + h)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}

0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0

0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0

Rabs h < x / 2
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0

Rabs h < alp
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
alp <= x / 2
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0

alp <= x / 2
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2

0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2

0 < x / 2
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2
x / 2 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2

x / 2 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:- h < x / 2

x / 2 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2
h < 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:- h < x / 2

- h - x / 2 + x / 2 < - h - x / 2 + (x + h)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2
h < 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:- h < x / 2

- h < - h - x / 2 + (x + h)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2
h < 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:- h < x / 2

- h < - h - x / 2 + (x / 2 + x / 2 + h)
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2
h < 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hlt:h < 0
H7:Rabs h < x / 2

h < 0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0
0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Hgt:h >= 0

0 < x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}

x <> x + h
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (x + h - x) < x0
x:R
H:0 < x
H0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)
eps:R
H1:0 < eps
x0:R
H2:x0 > 0
H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps
alp:=Rmin x0 (x / 2):R
H4:0 < alp
h:R
H5:h <> 0
H6:Rabs h < {| pos := alp; cond_pos := H4 |}

Rabs (x + h - x) < x0
replace (x + h - x) with h; [ apply Rlt_le_trans with alp; [ apply H6 | unfold alp; apply Rmin_l ] | ring ]. Qed.

forall (f g : R -> R) (D D1 : R -> Prop) (x : R), (forall x0 : R, D1 x0 -> D x0) -> D_in f g D x -> D_in f g D1 x

forall (f g : R -> R) (D D1 : R -> Prop) (x : R), (forall x0 : R, D1 x0 -> D x0) -> D_in f g D x -> D_in f g D1 x
f, g:R -> R
D, D1:R -> Prop
x:R
H:forall x0 : R, D1 x0 -> D x0

limit1_in (fun x0 : R => (f x0 - f x) / (x0 - x)) (D_x D x) (g x) x -> limit1_in (fun x0 : R => (f x0 - f x) / (x0 - x)) (D_x D1 x) (g x) x
f, g:R -> R
D, D1:R -> Prop
x:R
H:forall x0 : R, D1 x0 -> D x0
H0:limit1_in (fun x0 : R => (f x0 - f x) / (x0 - x)) (D_x D x) (g x) x

forall x0 : R, D_x D1 x x0 -> D_x D x x0
intros x1 [H1 H2]; split; auto. Qed.

forall (f g h : R -> R) (D : R -> Prop) (x : R), f x = g x -> D_in h f D x -> D_in h g D x

forall (f g h : R -> R) (D : R -> Prop) (x : R), f x = g x -> D_in h f D x -> D_in h g D x
f, g, h:R -> R
D:R -> Prop
x:R
H:f x = g x

limit1_in (fun x0 : R => (h x0 - h x) / (x0 - x)) (D_x D x) (f x) x -> limit1_in (fun x0 : R => (h x0 - h x) / (x0 - x)) (D_x D x) (g x) x
rewrite H; auto. Qed.

forall y z : R, 0 < y -> D_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (fun x : R => 0 < x) y

forall y z : R, 0 < y -> D_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (fun x : R => 0 < x) y
y, z:R
H:0 < y

forall x : R, 0 < x -> Dgf (fun x0 : R => 0 < x0) (fun _ : R => True) ln x
y, z:R
H:0 < y
D_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) y
y, z:R
H:0 < y
x:R
H0:0 < x

0 < x
y, z:R
H:0 < y
D_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) y
y, z:R
H:0 < y

D_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) y
y, z:R
H:0 < y

/ y * (z * exp (z * ln y)) = z * y ^R (z - 1)
y, z:R
H:0 < y
D_in (fun x : R => x ^R z) (fun x : R => / x * (z * exp (z * ln x))) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) y
y, z:R
H:0 < y

D_in (fun x : R => x ^R z) (fun x : R => / x * (z * exp (z * ln x))) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) y
y, z:R
H:0 < y

D_in ln Rinv (fun x : R => 0 < x) y
y, z:R
H:0 < y
D_in (fun x : R => exp (z * x)) (fun x : R => z * exp (z * x)) (fun _ : R => True) (ln y)
y, z:R
H:0 < y

D_in (fun x : R => exp (z * x)) (fun x : R => z * exp (z * x)) (fun _ : R => True) (ln y)
y, z:R
H:0 < y

forall x : R, True -> Dgf (fun _ : R => True) (fun _ : R => True) (fun x0 : R => z * x0) x
y, z:R
H:0 < y
D_in (fun x : R => exp (z * x)) (fun x : R => z * exp (z * x)) (Dgf (fun _ : R => True) (fun _ : R => True) (fun x : R => z * x)) (ln y)
y, z:R
H:0 < y

D_in (fun x : R => exp (z * x)) (fun x : R => z * exp (z * x)) (Dgf (fun _ : R => True) (fun _ : R => True) (fun x : R => z * x)) (ln y)
y, z:R
H:0 < y

D_in (fun x : R => z * x) (fun _ : R => z) (fun _ : R => True) (ln y)
y, z:R
H:0 < y
D_in exp exp (fun _ : R => True) (z * ln y)
y, z:R
H:0 < y

z * 1 = z
y, z:R
H:0 < y
D_in (fun x : R => z * x) (fun _ : R => z * 1) (fun _ : R => True) (ln y)
y, z:R
H:0 < y
D_in exp exp (fun _ : R => True) (z * ln y)
y, z:R
H:0 < y

D_in (fun x : R => z * x) (fun _ : R => z * 1) (fun _ : R => True) (ln y)
y, z:R
H:0 < y
D_in exp exp (fun _ : R => True) (z * ln y)
y, z:R
H:0 < y

D_in exp exp (fun _ : R => True) (z * ln y)
assert (H0 := derivable_pt_lim_D_in exp exp (z * ln y)); elim H0; clear H0; intros _ H0; apply H0; apply derivable_pt_lim_exp. Qed.

forall x y : R, 0 < x -> derivable_pt_lim (fun x0 : R => x0 ^R y) x (y * x ^R (y - 1))

forall x y : R, 0 < x -> derivable_pt_lim (fun x0 : R => x0 ^R y) x (y * x ^R (y - 1))
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => x0 ^R y) x (y * x ^R (y - 1))
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => x0 ^R y) x (y * (x ^R y * x ^R (- (1))))
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => x0 ^R y) x (y * (x ^R y * / x ^R 1))
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => x0 ^R y) x (y * (x ^R y * / x))
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => x0 ^R y) x (y * x ^R y * / x)
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => exp (y * ln x0)) x (y * exp (y * ln x) * / x)
x, y:R
H:0 < x

derivable_pt_lim ln x (/ x)
x, y:R
H:0 < x
derivable_pt_lim (fun x0 : R => exp (y * x0)) (ln x) (y * exp (y * ln x))
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => exp (y * x0)) (ln x) (y * exp (y * ln x))
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => exp (y * x0)) (ln x) (exp (y * ln x) * y)
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => y * x0) (ln x) y
x, y:R
H:0 < x
derivable_pt_lim exp (y * ln x) (exp (y * ln x))
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => y * x0) (ln x) (0 * ln x + y * 1)
x, y:R
H:0 < x
0 * ln x + y * 1 = y
x, y:R
H:0 < x
derivable_pt_lim exp (y * ln x) (exp (y * ln x))
x, y:R
H:0 < x

derivable_pt_lim (fun _ : R => y) (ln x) 0
x, y:R
H:0 < x
derivable_pt_lim (fun x0 : R => x0) (ln x) 1
x, y:R
H:0 < x
0 * ln x + y * 1 = y
x, y:R
H:0 < x
derivable_pt_lim exp (y * ln x) (exp (y * ln x))
x, y:R
H:0 < x

derivable_pt_lim (fun x0 : R => x0) (ln x) 1
x, y:R
H:0 < x
0 * ln x + y * 1 = y
x, y:R
H:0 < x
derivable_pt_lim exp (y * ln x) (exp (y * ln x))
x, y:R
H:0 < x

0 * ln x + y * 1 = y
x, y:R
H:0 < x
derivable_pt_lim exp (y * ln x) (exp (y * ln x))
x, y:R
H:0 < x

derivable_pt_lim exp (y * ln x) (exp (y * ln x))
apply derivable_pt_lim_exp. Qed. (* added later. *)

forall x y z : R, 0 < x -> 0 < y -> x ^R z * y ^R z = (x * y) ^R z
x, y, z:R
x0:0 < x
y0:0 < y

exp (z * ln x) * exp (z * ln y) = exp (z * ln (x * y))
rewrite <- exp_plus, ln_mult, Rmult_plus_distr_l; auto. Qed.
a, b, c:R

0 < c -> 0 < a < b -> a ^R c < b ^R c
a, b, c:R

0 < c -> 0 < a < b -> a ^R c < b ^R c
a, b, c:R
c0:0 < c
a0:0 < a
ab:a < b

c * ln a < c * ln b
now apply Rmult_lt_compat_l; auto; apply ln_increasing; lra. Qed.
a, b, c:R

0 <= c -> 0 < a <= b -> a ^R c <= b ^R c
a, b, c:R

0 <= c -> 0 < a <= b -> a ^R c <= b ^R c
a, b, c:R
c0:0 < c

0 < a <= b -> a ^R c <= b ^R c
a, b, c:R
c0:0 = c
H:0 < a <= b
0 < b
a, b, c:R
c0:0 = c
H:0 < a <= b
0 < a
a, b, c:R
c0:0 < c
a0:0 < a
ab:a < b

a ^R c <= b ^R c
a, b, c:R
c0:0 < c
a0:0 < a
ab:a = b
a ^R c <= b ^R c
a, b, c:R
c0:0 = c
H:0 < a <= b
0 < b
a, b, c:R
c0:0 = c
H:0 < a <= b
0 < a
a, b, c:R
c0:0 < c
a0:0 < a
ab:a = b

a ^R c <= b ^R c
a, b, c:R
c0:0 = c
H:0 < a <= b
0 < b
a, b, c:R
c0:0 = c
H:0 < a <= b
0 < a
a, b, c:R
c0:0 = c
H:0 < a <= b

0 < b
a, b, c:R
c0:0 = c
H:0 < a <= b
0 < a
a, b, c:R
c0:0 = c
H:0 < a <= b

0 < a
tauto. Qed. (* arcsinh function *) Definition arcsinh x := ln (x + sqrt (x ^ 2 + 1)).

forall x : R, arcsinh (sinh x) = x
x:R

ln ((exp x - exp (- x)) / 2 + sqrt (((exp x - exp (- x)) / 2) ^ 2 + 1)) = x
x:R
Rminus_eq_0:forall r : R, r - r = 0

ln ((exp x - exp (- x)) / 2 + sqrt (((exp x - exp (- x)) / 2) ^ 2 + 1)) = x
x:R
Rminus_eq_0:forall r : R, r - r = 0

ln ((exp x + - exp (- x)) / 2 + sqrt (((exp x + - exp (- x)) / 2) ^ 2 + exp (x + - x))) = x
x:R
Rminus_eq_0:forall r : R, r - r = 0

ln ((exp x + - exp (- x)) / 2 + sqrt (((exp x + - exp (- x)) / 2) ^ 2 + exp x * exp (- x))) = x
x:R
Rminus_eq_0:forall r : R, r - r = 0

ln ((exp x + - exp (- x)) / 2 + sqrt (((exp x + exp (- x)) / 2) ^ 2)) = x
x:R
Rminus_eq_0:forall r : R, r - r = 0

ln ((exp x + - exp (- x)) / 2 + (exp x + exp (- x)) / 2) = x
x:R
Rminus_eq_0:forall r : R, r - r = 0

ln (exp x) = x
rewrite ln_exp; reflexivity. Qed.
x:R

sinh (arcsinh x) = x
x:R

(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R

0 < x + sqrt (x ^ 2 + 1)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
r:x <= 0

0 < x + sqrt (x ^ 2 + 1)
x:R
n:~ x <= 0
0 < x + sqrt (x ^ 2 + 1)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
r:x <= 0

0 < x + sqrt ((- x) ^ 2 + 1)
x:R
n:~ x <= 0
0 < x + sqrt (x ^ 2 + 1)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
r:x <= 0

sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)
0 < x + sqrt ((- x) ^ 2 + 1)
x:R
n:~ x <= 0
0 < x + sqrt (x ^ 2 + 1)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
r:x <= 0

0 <= (- x) ^ 2 < (- x) ^ 2 + 1
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)
0 < x + sqrt ((- x) ^ 2 + 1)
x:R
n:~ x <= 0
0 < x + sqrt (x ^ 2 + 1)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)

0 < x + sqrt ((- x) ^ 2 + 1)
x:R
n:~ x <= 0
0 < x + sqrt (x ^ 2 + 1)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)

0 < - sqrt ((- x) ^ 2) + sqrt ((- x) ^ 2 + 1)
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)
- sqrt ((- x) ^ 2) = x
x:R
n:~ x <= 0
0 < x + sqrt (x ^ 2 + 1)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)

- sqrt ((- x) ^ 2) = x
x:R
n:~ x <= 0
0 < x + sqrt (x ^ 2 + 1)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
n:~ x <= 0

0 < x + sqrt (x ^ 2 + 1)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)

(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)

(x + sqrt (x ^ 2 + 1) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = x
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)

(x + sqrt (x ^ 2 + 1) - / (x + sqrt (x ^ 2 + 1))) / 2 = x
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z

(x + sqrt (x ^ 2 + 1) - / (x + sqrt (x ^ 2 + 1))) / 2 = x
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z

(x + sqrt (x ^ 2 + 1)) * / 2 - / (x + sqrt (x ^ 2 + 1)) * / 2 - x = 0
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z

forall x0 y z : R, x0 - z = y -> x0 - y - z = 0
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z
(x + sqrt (x ^ 2 + 1)) * / 2 - x = / (x + sqrt (x ^ 2 + 1)) * / 2
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z

(x + sqrt (x ^ 2 + 1)) * / 2 - x = / (x + sqrt (x ^ 2 + 1)) * / 2
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z

2 * (x + sqrt (x ^ 2 + 1)) * ((x + sqrt (x ^ 2 + 1)) * / 2 - x) = 2 * (x + sqrt (x ^ 2 + 1)) * (/ (x + sqrt (x ^ 2 + 1)) * / 2)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z
pow2_sqrt:forall x0 : R, 0 <= x0 -> sqrt x0 ^ 2 = x0

2 * (x + sqrt (x ^ 2 + 1)) * ((x + sqrt (x ^ 2 + 1)) * / 2 - x) = 2 * (x + sqrt (x ^ 2 + 1)) * (/ (x + sqrt (x ^ 2 + 1)) * / 2)
x:R
cmp:0 < x + sqrt (x ^ 2 + 1)
Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z
pow2_sqrt:forall x0 : R, 0 <= x0 -> sqrt x0 ^ 2 = x0

0 <= x ^ 2 + 1
apply Rplus_le_le_0_compat;[simpl; rewrite Rmult_1_r; apply (Rle_0_sqr x)|apply Rlt_le, Rlt_0_1]. Qed.

forall x : R, derivable_pt_lim arcsinh x (/ sqrt (x ^ 2 + 1))
x:R

derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R

0 < x + sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
r:x <= 0

0 < x + sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
r:x <= 0

0 < x + sqrt ((- x) ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
r:x <= 0

sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)
0 < x + sqrt ((- x) ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
r:x <= 0

0 <= (- x) ^ 2 < (- x) ^ 2 + 1
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)
0 < x + sqrt ((- x) ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)

0 < x + sqrt ((- x) ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)

0 < - sqrt ((- x) ^ 2) + sqrt ((- x) ^ 2 + 1)
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)
- sqrt ((- x) ^ 2) = x
x:R
H:0 < x + sqrt (x ^ 2 + 1)
derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
r:x <= 0
H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)

- sqrt ((- x) ^ 2) = x
x:R
H:0 < x + sqrt (x ^ 2 + 1)
derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
H:0 < x + sqrt (x ^ 2 + 1)

derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
H:0 < x + sqrt (x ^ 2 + 1)

0 < x ^ 2 + 1
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim (fun x0 : R => x0 + sqrt (x0 ^ 2 + 1)) x (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim (fun x0 : R => x0) x 1
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim (fun x0 : R => sqrt (x0 ^ 2 + 1)) x (/ (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim (fun x0 : R => sqrt (x0 ^ 2 + 1)) x (/ (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim (fun x0 : R => x0 ^ 2 + 1) x (INR 2 * x ^ 1 + 0)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim sqrt (x ^ 2 + 1) (/ (2 * sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim (fun x0 : R => x0 ^ 2) x (INR 2 * x ^ 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim (fun _ : R => 1) x 0
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim sqrt (x ^ 2 + 1) (/ (2 * sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim (fun _ : R => 1) x 0
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim sqrt (x ^ 2 + 1) (/ (2 * sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim sqrt (x ^ 2 + 1) (/ (2 * sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1
/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (2 * x)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

/ (x + sqrt (x ^ 2 + 1)) * ((sqrt (x ^ 2 + 1) + x) / sqrt (x ^ 2 + 1)) = / sqrt (x ^ 2 + 1)
x:R
H:0 < x + sqrt (x ^ 2 + 1)
H0:0 < x ^ 2 + 1

(x + sqrt (x ^ 2 + 1)) * (/ (x + sqrt (x ^ 2 + 1)) * ((sqrt (x ^ 2 + 1) + x) / sqrt (x ^ 2 + 1))) = (x + sqrt (x ^ 2 + 1)) * / sqrt (x ^ 2 + 1)
rewrite <- Rmult_assoc, Rinv_r;[field | ]; apply Rgt_not_eq; auto; apply sqrt_lt_R0; assumption. Qed.

forall x y : R, x < y -> arcsinh x < arcsinh y
x, y:R
xy:x < y

arcsinh x < arcsinh y
x, y:R
xy:x < y

arcsinh y <= arcsinh x -> arcsinh x < arcsinh y
x, y:R
xy:x < y
abs:arcsinh y <= arcsinh x

y <= x
x, y:R
xy:x < y
abs:arcsinh y <= arcsinh x

sinh (arcsinh y) <= sinh (arcsinh x)
x, y:R
xy:x < y
lt:arcsinh y < arcsinh x

sinh (arcsinh y) <= sinh (arcsinh x)
apply Rlt_le, sinh_lt; assumption. Qed.

forall x y : R, x <= y -> arcsinh x <= arcsinh y
x, y:R
xy:x < y

arcsinh x <= arcsinh y
x, y:R
xqy:x = y
arcsinh x <= arcsinh y
x, y:R
xqy:x = y

arcsinh x <= arcsinh y
rewrite xqy; apply Rle_refl. Qed.

arcsinh 0 = 0
unfold arcsinh; rewrite pow_ne_zero, !Rplus_0_l, sqrt_1, ln_1; [reflexivity | discriminate]. Qed.