Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (*i Due to L.Thery i*) (************************************************************) (* Definitions of log and Rpower : R->R->R; main properties *) (************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import SeqSeries. Require Import Rtrigo1. Require Import Ranalysis1. Require Import Exp_prop. Require Import Rsqrt_def. Require Import R_sqrt. Require Import Sqrt_reg. Require Import MVT. Require Import Ranalysis4. Require Import Lra. Local Open Scope R_scope.forall (P : R -> Prop) (x y : R), P x -> P y -> P (Rmin x y)intros P x y H1 H2; unfold Rmin; case (Rle_dec x y); intro; assumption. Qed.forall (P : R -> Prop) (x y : R), P x -> P y -> P (Rmin x y)exp 1 <= 3exp 1 <= 3exp 1 <> 0exp_1:exp 1 <> 0exp 1 <= 3exp_1:exp 1 <> 0exp 1 <= 3exp_1:exp 1 <> 00 < / exp 1exp_1:exp 1 <> 0/ exp 1 * exp 1 <= / exp 1 * 3exp_1:exp 1 <> 0/ exp 1 * exp 1 <= / exp 1 * 3exp_1:exp 1 <> 01 <= / exp 1 * 3exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 00 < / 3exp_1:exp 1 <> 0/ 3 * 1 <= / 3 * (/ exp 1 * 3)exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0/ 3 * 1 <= / 3 * (/ exp 1 * 3)exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0/ 3 <= 1 * / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0/ 3 <= exp (-1)exp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)/ 3 <= xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1) -> / 3 <= xexp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)exp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)H0:1 * / 1 + -1 * 1 * / 1 + -1 * (-1 * 1) * / (1 + 1) + -1 * (-1 * (-1 * 1)) * / (1 + 1 + 1 + 1 + 1 + 1) <= x/ 3 <= xexp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)exp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)H0:1 * / 1 + -1 * 1 * / 1 + -1 * (-1 * 1) * / (1 + 1) + -1 * (-1 * (-1 * 1)) * / (1 + 1 + 1 + 1 + 1 + 1) <= x1 * / 1 + -1 * 1 * / 1 + -1 * (-1 * 1) * / 2 + -1 * (-1 * (-1 * 1)) * / (2 + 1 + 1 + 1 + 1) <= xexp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)exp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)exp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_decreasing (fun i : nat => / INR (fact i))exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:nat0 < INR (fact n)exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact n) * / INR (fact (S n)) <= INR (fact n) * / INR (fact n)exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact n) * / INR (fact (S n)) <= INR (fact n) * / INR (fact n)exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:nat0 < INR (fact (S n))exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact (S n)) * (INR (fact n) * / INR (fact (S n))) <= INR (fact (S n)) * (INR (fact n) * / INR (fact n))exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact (S n)) * (INR (fact n) * / INR (fact (S n))) <= INR (fact (S n)) * (INR (fact n) * / INR (fact n))exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact (S n)) * (INR (fact n) * / INR (fact (S n))) <= INR (fact (S n)) * 1exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact n) <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact n) * 1 <= INR (fact (S n))exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact (S n)) <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact n) <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact (S n)) <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact n) <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)n:natINR (fact n) <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun i : nat => / INR (fact i)) 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (1 ^ n0 / INR (fact n0)) 0 < eps0eps:RH1:eps > 0x0:natH2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (1 ^ n0 / INR (fact n0) - 0) < epsn:natH3:(n >= x0)%natRabs (1 ^ n / INR (fact n) - 0) < epsexp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (1 ^ n0 / INR (fact n0)) 0 < eps0eps:RH1:eps > 0x0:natH2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (1 ^ n0 / INR (fact n0) - 0) < epsn:natH3:(n >= x0)%nat1 ^ n / INR (fact n) = / INR (fact n)exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (1 ^ n0 / INR (fact n0)) 0 < eps0eps:RH1:eps > 0x0:natH2:forall n0 : nat, (n0 >= x0)%nat -> Rabs (1 ^ n0 / INR (fact n0) - 0) < epsn:natH3:(n >= x0)%nat1 ^ n / INR (fact n) = / INR (fact n)exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:infinite_sum (fun i : nat => / INR (fact i) * (-1) ^ i) xH:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) xexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < eps0H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < epsn:natH2:(n >= x0)%natR_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n) x < epsexp_1:exp 1 <> 0x:Re:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < eps0H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < epsn:natH2:(n >= x0)%natsum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n = sum_f_R0 (fun i : nat => (-1) ^ i * / INR (fact i)) nexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0x:Re:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < eps0H:Un_decreasing (fun i : nat => / INR (fact i)) -> Un_cv (fun i : nat => / INR (fact i)) 0 -> Un_cv (fun N : nat => sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) N) x -> sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (S (2 * 1)) <= x <= sum_f_R0 (tg_alt (fun i : nat => / INR (fact i))) (2 * 1)eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n0) x < epsn:natH2:(n >= x0)%natsum_f_R0 (fun i : nat => / INR (fact i) * (-1) ^ i) n = sum_f_R0 (fun i : nat => (-1) ^ i * / INR (fact i)) nexp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0exp (-1) = / exp 1exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0exp 1 * exp (-1) = exp 1 * / exp 1exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 01 = 1exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0exp_1:exp 1 <> 03 <> 0exp_1:exp 1 <> 0exp 1 <> 0assumption. Qed. (******************************************************************)exp_1:exp 1 <> 0exp 1 <> 0
(******************************************************************)forall x y : R, x < y -> exp x < exp yforall x y : R, x < y -> exp x < exp yx, y:RH:x < yexp x < exp yx, y:RH:x < yderivable expx, y:RH:x < yH0:derivable expexp x < exp yx, y:RH:x < yH0:derivable expexp x < exp yx, y:RH:x < yH0:derivable expH1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> strict_increasing expexp x < exp yx, y:RH:x < yH0:derivable expH1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0exp x < exp yx, y:RH:x < yH0:derivable expH1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0forall x0 : R, 0 < derive_pt exp x0 (H0 x0)x, y:RH:x < yH0:derivable expH1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0x < yx, y:RH:x < yH0:derivable expH1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0x0:R0 < derive_pt exp x0 (H0 x0)x, y:RH:x < yH0:derivable expH1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0x < yx, y:RH:x < yH0:derivable expH1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0x0:R0 < exp x0x, y:RH:x < yH0:derivable expH1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0x0:Rexp x0 = derive_pt exp x0 (H0 x0)x, y:RH:x < yH0:derivable expH1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0x < yx, y:RH:x < yH0:derivable expH1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0x0:Rexp x0 = derive_pt exp x0 (H0 x0)x, y:RH:x < yH0:derivable expH1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0x < yx, y:RH:x < yH0:derivable expH1:(forall x1 : R, 0 < derive_pt exp x1 (H0 x1)) -> forall x1 y0 : R, x1 < y0 -> exp x1 < exp y0x0:Rderivable_pt_lim exp x0 (exp x0)x, y:RH:x < yH0:derivable expH1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0x < yapply H. Qed.x, y:RH:x < yH0:derivable expH1:(forall x0 : R, 0 < derive_pt exp x0 (H0 x0)) -> forall x0 y0 : R, x0 < y0 -> exp x0 < exp y0x < yforall x y : R, exp x < exp y -> x < yforall x y : R, exp x < exp y -> x < yx, y:RH:exp x < exp yH1:x < yx < yx, y:RH:exp x < exp yH1:x = yx < yx, y:RH:exp x < exp yH1:x > yx < yx, y:RH:exp x < exp yH1:x = yx < yx, y:RH:exp x < exp yH1:x > yx < yx, y:RH:exp x < exp yH1:x > yx < yelim (Rlt_irrefl _ (Rlt_trans _ _ _ H H2)). Qed.x, y:RH:exp x < exp yH1:x > yH2:exp y < exp xx < yforall x : R, 0 < x -> 1 + x < exp xforall x : R, 0 < x -> 1 + x < exp xx:RH:0 < xH0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < xx0:RH1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < xH2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)H3:0 < x0 < x- exp 0 + (1 + x) < exp x0 * xx:RH:0 < xH0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < xx0:RH1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < xH2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)H3:0 < x0 < xexp x0 = derive_pt exp x0 (derivable_exp x0)x:RH:0 < xH0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < xx0:RH1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < xH2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)H3:0 < x0 < x0 < xx:RH:0 < xH0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < xx0:RH1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < xH2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)H3:0 < x0 < x1 < exp x0x:RH:0 < xH0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < xx0:RH1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < xH2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)H3:0 < x0 < xexp x0 = derive_pt exp x0 (derivable_exp x0)x:RH:0 < xH0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < xx0:RH1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < xH2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)H3:0 < x0 < x1 < exp x0x:RH:0 < xH0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < xx0:RH1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < xH2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)H3:0 < x0 < xexp x0 = derive_pt exp x0 (derivable_exp x0)symmetry ; apply derive_pt_eq_0; apply derivable_pt_lim_exp. Qed.x:RH:0 < xH0:exists c : R, exp x - exp 0 = derive_pt exp c (derivable_exp c) * (x - 0) /\ 0 < c < xx0:RH1:exp x - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x - 0) /\ 0 < x0 < xH2:exp x + - exp 0 = derive_pt exp x0 (derivable_exp x0) * (x + - 0)H3:0 < x0 < xexp x0 = derive_pt exp x0 (derivable_exp x0)forall y : R, 1 <= y -> {z : R | y = exp z}forall y : R, 1 <= y -> {z : R | y = exp z}y:RH:1 <= yf:=fun x : R => exp x - y:R -> R{z : R | y = exp z}y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < y{z : R | y = exp z}y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0{z : R | y = exp z}y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity f{z : R | y = exp z}y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0continuity fy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity fH3:0 <= f y{z : R | y = exp z}y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity f0 <= f yy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0continuity fy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity fH3:0 <= f yH4:f 0 * f y <= 0{z : R | y = exp z}y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity fH3:0 <= f yf 0 * f y <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity f0 <= f yy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0continuity fy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity fH3:0 <= f yf 0 * f y <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity f0 <= f yy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0continuity fy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity f0 <= f yy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0continuity fy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity fy + 0 < 1 + yy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity f1 + y < y + (exp y - y)y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0continuity fy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0H2:continuity f1 + y < y + (exp y - y)y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0continuity fy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yH1:f 0 <= 0continuity fy:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0unfold f; rewrite exp_0; apply Rplus_le_reg_l with y; rewrite Rplus_0_r; replace (y + (1 - y)) with 1; [ apply H | ring ]. Qed. (**********)y:RH:1 <= yf:=fun x : R => exp x - y:R -> RH0:0 < yf 0 <= 0forall y : R, 0 < y -> {z : R | y = exp z}forall y : R, 0 < y -> {z : R | y = exp z}y:RH:0 < yHle:1 <= y{z : R | y = exp z}y:RH:0 < yHnle:~ 1 <= y{z : R | y = exp z}y:RH:0 < yHnle:~ 1 <= y{z : R | y = exp z}y:RH:0 < yHnle:~ 1 <= y1 <= / yy:RH:0 < yHnle:~ 1 <= yH0:1 <= / y{z : R | y = exp z}y:RH:0 < yHnle:~ 1 <= y0 < yy:RH:0 < yHnle:~ 1 <= yy * 1 <= y * / yy:RH:0 < yHnle:~ 1 <= yH0:1 <= / y{z : R | y = exp z}y:RH:0 < yHnle:~ 1 <= yy * 1 <= y * / yy:RH:0 < yHnle:~ 1 <= yH0:1 <= / y{z : R | y = exp z}y:RH:0 < yHnle:~ 1 <= yy * 1 <= 1y:RH:0 < yHnle:~ 1 <= yy <> 0y:RH:0 < yHnle:~ 1 <= yH0:1 <= / y{z : R | y = exp z}y:RH:0 < yHnle:~ 1 <= yy <> 0y:RH:0 < yHnle:~ 1 <= yH0:1 <= / y{z : R | y = exp z}y:RH:0 < yHnle:~ 1 <= yH0:1 <= / y{z : R | y = exp z}y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp xexp x / y * y = exp x / y * exp (- x)y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp xexp x / y <> 0y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp xexp x * 1 = exp x * / y * exp (- x)y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp xy <> 0y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp xexp x / y <> 0y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp xy <> 0y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp xexp x / y <> 0y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp xexp x / y <> 0y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp xexp x <> 0y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp x/ y <> 0apply Rinv_neq_0_compat; red; intro H3; rewrite H3 in H; elim (Rlt_irrefl _ H). Qed. (* Definition of log R+* -> R *) Definition Rln (y:posreal) : R := let (a,_) := ln_exists (pos y) (cond_pos y) in a. (* Extension on R *) Definition ln (x:R) : R := match Rlt_dec 0 x with | left a => Rln (mkposreal x a) | right a => 0 end.y:RH:0 < yHnle:~ 1 <= yH0:1 <= / yx:Rp:/ y = exp x/ y <> 0forall x : R, 0 < x -> exp (ln x) = xforall x : R, 0 < x -> exp (ln x) = xx:RH:0 < xexp (Rln {| pos := x; cond_pos := H |}) = xsymmetry; apply Hex. Qed.x:RH:0 < xx0:RHex:{| pos := x; cond_pos := H |} = exp x0exp x0 = xforall x y : R, exp x = exp y -> x = yintros x y H; case (Rtotal_order x y); [ intros H1 | intros [H1| H1] ]; auto; assert (H2 := exp_increasing _ _ H1); rewrite H in H2; elim (Rlt_irrefl _ H2). Qed.forall x y : R, exp x = exp y -> x = yforall x : R, exp (- x) = / exp xforall x : R, exp (- x) = / exp xx:Rexp x <> 0x:RH:exp x <> 0exp (- x) = / exp xx:RH:exp x <> 0exp (- x) = / exp xx:RH:exp x <> 0exp x * exp (- x) = exp x * / exp xx:RH:exp x <> 0exp x <> 0x:RH:exp x <> 01 = exp x * / exp xx:RH:exp x <> 0exp x <> 0x:RH:exp x <> 0exp x <> 0x:RH:exp x <> 0exp x <> 0apply H. Qed. (******************************************************************)x:RH:exp x <> 0exp x <> 0
(******************************************************************)forall x y : R, 0 < x -> x < y -> ln x < ln yforall x y : R, 0 < x -> x < y -> ln x < ln yx, y:RH:0 < xH0:x < yexp (ln x) < exp (ln y)x, y:RH:0 < xH0:x < yx < yx, y:RH:0 < xH0:x < y0 < yx, y:RH:0 < xH0:x < y0 < xx, y:RH:0 < xH0:x < y0 < yx, y:RH:0 < xH0:x < y0 < xapply H. Qed.x, y:RH:0 < xH0:x < y0 < xforall x : R, ln (exp x) = xforall x : R, ln (exp x) = xx:Rexp (ln (exp x)) = exp xapply exp_pos. Qed.x:R0 < exp xln 1 = 0rewrite <- exp_0; rewrite ln_exp; reflexivity. Qed.ln 1 = 0forall x y : R, 0 < x -> 0 < y -> ln x < ln y -> x < yforall x y : R, 0 < x -> 0 < y -> ln x < ln y -> x < yx, y:RH:0 < xH0:0 < yH1:ln x < ln yexp (ln x) < exp (ln y)x, y:RH:0 < xH0:0 < yH1:ln x < ln y0 < yx, y:RH:0 < xH0:0 < yH1:ln x < ln y0 < xx, y:RH:0 < xH0:0 < yH1:ln x < ln y0 < yx, y:RH:0 < xH0:0 < yH1:ln x < ln y0 < xassumption. Qed.x, y:RH:0 < xH0:0 < yH1:ln x < ln y0 < xforall x y : R, 0 < x -> 0 < y -> ln x = ln y -> x = yforall x y : R, 0 < x -> 0 < y -> ln x = ln y -> x = yx, y:RH:0 < xH0:0 < yH'0:ln x = ln yH1:x < yx = yx, y:RH:0 < xH0:0 < yH'0:ln x = ln yH1:x > yx = yassert (H2 := ln_increasing _ _ H0 H1); rewrite H'0 in H2; elim (Rlt_irrefl _ H2). Qed.x, y:RH:0 < xH0:0 < yH'0:ln x = ln yH1:x > yx = yforall x y : R, 0 < x -> 0 < y -> ln (x * y) = ln x + ln yforall x y : R, 0 < x -> 0 < y -> ln (x * y) = ln x + ln yx, y:RH:0 < xH0:0 < yexp (ln (x * y)) = exp (ln x + ln y)x, y:RH:0 < xH0:0 < yexp (ln (x * y)) = exp (ln x) * exp (ln y)x, y:RH:0 < xH0:0 < yx * y = x * yx, y:RH:0 < xH0:0 < y0 < yx, y:RH:0 < xH0:0 < y0 < xx, y:RH:0 < xH0:0 < y0 < x * yx, y:RH:0 < xH0:0 < y0 < yx, y:RH:0 < xH0:0 < y0 < xx, y:RH:0 < xH0:0 < y0 < x * yx, y:RH:0 < xH0:0 < y0 < xx, y:RH:0 < xH0:0 < y0 < x * yapply Rmult_lt_0_compat; assumption. Qed.x, y:RH:0 < xH0:0 < y0 < x * yforall x : R, 0 < x -> ln (/ x) = - ln xforall x : R, 0 < x -> ln (/ x) = - ln xx:RH:0 < x/ x = / xx:RH:0 < x0 < xx:RH:0 < x0 < / xx:RH:0 < x0 < xx:RH:0 < x0 < / xapply Rinv_0_lt_compat; assumption. Qed.x:RH:0 < x0 < / xforall y : R, 0 < y -> continue_in ln (fun x : R => 0 < x) yforall y : R, 0 < y -> continue_in ln (fun x : R => 0 < x) yy:RH:0 < ycontinue_in ln (fun x : R => 0 < x) yy:RH:0 < yeps:RHeps:eps > 0exists alp : R, alp > 0 /\ (forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < alp -> dist R_met (ln x) (ln y) < eps)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexists alp : R, alp > 0 /\ (forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < alp -> dist R_met (ln x) (ln y) < eps)y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1exists alp : R, alp > 0 /\ (forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < alp -> dist R_met (ln x) (ln y) < eps)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) > 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < y * (exp eps - 1)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < y * (1 - exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < exp eps - 1y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < y * (1 - exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < exp eps - 1y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < y * (1 - exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 11 + 0 < 1 + (exp eps - 1)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < y * (1 - exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < y * (1 - exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < 1 - exp (- eps)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 10 < 1 - exp (- eps)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1exp (- eps) + 0 < exp (- eps) + (1 - exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : Base R_met, D_x (fun x0 : R => 0 < x0) y x /\ dist R_met x y < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> dist R_met (ln x) (ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1forall x : R, D_x (fun x0 : R => 0 < x0) y x /\ Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps))) -> Rabs (ln x - ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Rabs (ln x - ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = x -> Rabs (ln x - ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xRabs (ln x - ln y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y- ln (x * / y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y- eps < ln (x * / y)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yexp (- eps) < exp (ln (x * / y))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yexp (- eps) < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yy * exp (- eps) < y * (x * / y)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yy * exp (- eps) < y * (x * / y)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yy * exp (- eps) < xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y- x < - (y * exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yy + - x < y + - (y * exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yy + - x < y * (1 - exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yRabs (x - y) < y * (1 - exp (- eps))y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yRabs (x - y) = y + - xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yRabs (x - y) = y + - xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yx - y < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yln (x * / y) < ln 1y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yx * / y < 1y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yx * / y < 1y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < y0 < yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yy * (x * / y) < y * 1y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x < yy * (x * / y) < y * 1y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yRabs (ln 1) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yy <> 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x = yy <> 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (ln (x * / y)) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) < epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yexp (ln (x * / y)) < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yx * / y < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yy * (x * / y) < y * exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yy * (x * / y) < y * exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yx < y * exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y- y + x < - y + y * exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y- y + x < y * (exp eps - 1)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (x - y) < y * (exp eps - 1)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (x - y) = - y + xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yRabs (x - y) = - y + xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yx - y >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yln (x * / y) >= ln 1y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < 1y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y1 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y1 < x * / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > y0 < yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yy * 1 < y * (x * / y)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xHxy:x > yy * 1 < y * (x * / y)y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln (x * / y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln x + ln (/ y) = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = xln x + - ln y = ln x - ln yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))Hxyy:y * (x * / y) = x0 < / yy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y * (x * / y) = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))1 * x = xy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y <> 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsH2:exp (- eps) < 1x:RH3:0 < xH4:y <> xH5:Rabs (x - y) < Rmin (y * (exp eps - 1)) (y * (1 - exp (- eps)))y <> 0y:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp (- eps) < 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp eps0 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp eps * exp (- eps) < exp eps * 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 0H1:1 < exp epsexp eps * exp (- eps) < exp eps * 1y:RH:0 < yeps:RHeps:eps > 01 < exp epsy:RH:0 < yeps:RHeps:eps > 01 < exp epsapply exp_increasing; apply Heps. Qed. (******************************************************************)y:RH:0 < yeps:RHeps:eps > 0exp 0 < exp eps
(******************************************************************) Definition Rpower (x y:R) := exp (y * ln x). Local Infix "^R" := Rpower (at level 30, right associativity) : R_scope. (******************************************************************)
(******************************************************************)
Note: Rpower is prolongated to 1 on negative real numbers and
it thus does not extend integer power. The next two lemmas, which
hold for integer power, accidentally hold on negative real numbers
as a side effect of the default value taken on negative real
numbers. Contrastingly, the lemmas that do not hold for the
integer power of a negative number are stated for Rpower on the
positive numbers only (even if they accidentally hold due to the
default value of Rpower on the negative side, as it is the case
for Rpower_O).
forall x y z : R, z ^R (x + y) = z ^R x * z ^R yforall x y z : R, z ^R (x + y) = z ^R x * z ^R yrewrite Rmult_plus_distr_r; rewrite exp_plus; auto. Qed.x, y, z:Rexp ((x + y) * ln z) = exp (x * ln z) * exp (y * ln z)forall x y z : R, (x ^R y) ^R z = x ^R (y * z)forall x y z : R, (x ^R y) ^R z = x ^R (y * z)x, y, z:Rexp (z * ln (exp (y * ln x))) = exp (y * z * ln x)x, y, z:Rexp (z * (y * ln x)) = exp (y * z * ln x)x, y, z:Rexp (y * z * ln x) = exp (y * z * ln x)x, y, z:Ry * z * ln x = z * (y * ln x)ring. Qed.x, y, z:Ry * z * ln x = z * (y * ln x)forall x : R, 0 < x -> x ^R 0 = 1forall x : R, 0 < x -> x ^R 0 = 1rewrite Rmult_0_l; apply exp_0. Qed.x:Rexp (0 * ln x) = 1forall x : R, 0 < x -> x ^R 1 = xforall x : R, 0 < x -> x ^R 1 = xrewrite Rmult_1_l; apply exp_ln; apply H. Qed.x:RH:0 < xexp (1 * ln x) = xforall (n : nat) (x : R), 0 < x -> x ^R INR n = x ^ nforall (n : nat) (x : R), 0 < x -> x ^R INR n = x ^ nn:natforall x : R, 0 < x -> x ^R 0 = 1n:natforall n0 : nat, (forall x : R, 0 < x -> x ^R INR n0 = x ^ n0) -> forall x : R, 0 < x -> x ^R match n0 with | 0%nat => 1 | S _ => INR n0 + 1 end = x * x ^ n0n:natforall n0 : nat, (forall x : R, 0 < x -> x ^R INR n0 = x ^ n0) -> forall x : R, 0 < x -> x ^R match n0 with | 0%nat => 1 | S _ => INR n0 + 1 end = x * x ^ n0n, n1:nat(forall x : R, 0 < x -> x ^R INR 0 = x ^ 0) -> forall x : R, 0 < x -> x ^R 1 = x * x ^ 0n, n1:natforall n0 : nat, (forall x : R, 0 < x -> x ^R INR (S n0) = x ^ S n0) -> forall x : R, 0 < x -> x ^R (INR (S n0) + 1) = x * x ^ S n0intros n0 H x H0; rewrite Rpower_plus; rewrite H; try rewrite Rpower_1; try apply Rmult_comm || assumption. Qed.n, n1:natforall n0 : nat, (forall x : R, 0 < x -> x ^R INR (S n0) = x ^ S n0) -> forall x : R, 0 < x -> x ^R (INR (S n0) + 1) = x * x ^ S n0forall x y z : R, 1 < x -> y < z -> x ^R y < x ^R zforall x y z : R, 1 < x -> y < z -> x ^R y < x ^R zx, y, z:RH:1 < xH1:y < zx ^R y < x ^R zx, y, z:RH:1 < xH1:y < zexp (y * ln x) < exp (z * ln x)x, y, z:RH:1 < xH1:y < zy * ln x < z * ln xx, y, z:RH:1 < xH1:y < z0 < ln xx, y, z:RH:1 < xH1:y < zy < zx, y, z:RH:1 < xH1:y < z0 < 1x, y, z:RH:1 < xH1:y < z1 < xx, y, z:RH:1 < xH1:y < zy < zx, y, z:RH:1 < xH1:y < z1 < xx, y, z:RH:1 < xH1:y < zy < zapply H1. Qed.x, y, z:RH:1 < xH1:y < zy < zforall x : R, 0 < x -> x ^R (/ 2) = sqrt xforall x : R, 0 < x -> x ^R (/ 2) = sqrt xx:RH:0 < xx ^R (/ 2) = sqrt xx:RH:0 < x0 < x ^R (/ 2)x:RH:0 < x0 < sqrt xx:RH:0 < xln (x ^R (/ 2)) = ln (sqrt x)x:RH:0 < x0 < sqrt xx:RH:0 < xln (x ^R (/ 2)) = ln (sqrt x)x:RH:0 < xln (x ^R (/ 2)) = ln (sqrt x)x:RH:0 < xINR 2 * ln (x ^R (/ 2)) = INR 2 * ln (sqrt x)x:RH:0 < xINR 2 <> 0x:RH:0 < xexp (INR 2 * ln (x ^R (/ 2))) = exp (INR 2 * ln (sqrt x))x:RH:0 < xINR 2 <> 0x:RH:0 < xexp (INR 2 * ln (x ^R (/ 2))) = exp (INR 2 * ln (sqrt x))x:RH:0 < xINR 2 <> 0x:RH:0 < x(x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2 -> exp (INR 2 * ln (x ^R (/ 2))) = exp (INR 2 * ln (sqrt x))x:RH:0 < x(x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2x:RH:0 < xINR 2 <> 0x:RH:0 < x(x ^R (/ INR 2)) ^R INR 2 = sqrt x ^R INR 2x:RH:0 < xINR 2 <> 0x:RH:0 < xx ^R (/ INR 2 * INR 2) = sqrt x ^R INR 2x:RH:0 < xINR 2 <> 0x:RH:0 < xx ^R 1 = sqrt x ^R INR 2x:RH:0 < xINR 2 <> 0x:RH:0 < xINR 2 <> 0x:RH:0 < xx ^R INR 1 = sqrt x ^R INR 2x:RH:0 < xINR 2 <> 0x:RH:0 < xINR 2 <> 0x:RH:0 < xx * 1 = sqrt x * (sqrt x * 1)x:RH:0 < x0 < sqrt xx:RH:0 < x0 < xx:RH:0 < xINR 2 <> 0x:RH:0 < xINR 2 <> 0x:RH:0 < xsqrt x * sqrt x * 1 = sqrt x * (sqrt x * 1)x:RH:0 < x0 < sqrt xx:RH:0 < x0 < xx:RH:0 < xINR 2 <> 0x:RH:0 < xINR 2 <> 0x:RH:0 < x0 < sqrt xx:RH:0 < x0 < xx:RH:0 < xINR 2 <> 0x:RH:0 < xINR 2 <> 0x:RH:0 < x0 < xx:RH:0 < xINR 2 <> 0x:RH:0 < xINR 2 <> 0x:RH:0 < xINR 2 <> 0x:RH:0 < xINR 2 <> 0apply not_O_INR; discriminate. Qed.x:RH:0 < xINR 2 <> 0forall x y : R, x ^R (- y) = / x ^R yforall x y : R, x ^R (- y) = / x ^R yforall x y : R, exp (- y * ln x) = / exp (y * ln x)apply exp_Ropp. Qed.x, y:Rexp (- (y * ln x)) = / exp (y * ln x)x:Rz:Z0 < x -> powerRZ x z = x ^R IZR zx:Rz:Z0 < x -> powerRZ x z = x ^R IZR zx:Rz:ZHx:0 < xpowerRZ x z = x ^R IZR zx:Rz:ZHx:0 < xH:x <> 0powerRZ x z = x ^R IZR zx:Rz:ZHx:0 < xH:x <> 0e:z = 0%ZpowerRZ x 0 = x ^R 0x:Rz:ZHx:0 < xH:x <> 0n:nate:z = Z.of_nat npowerRZ x (Z.of_nat n) = x ^R IZR (Z.of_nat n)x:Rz:ZHx:0 < xH:x <> 0n:nate:z = (- Z.of_nat n)%ZpowerRZ x (- Z.of_nat n) = x ^R IZR (- Z.of_nat n)now rewrite Rpower_O.x:Rz:ZHx:0 < xH:x <> 0e:z = 0%ZpowerRZ x 0 = x ^R 0x:Rz:ZHx:0 < xH:x <> 0n:nate:z = Z.of_nat npowerRZ x (Z.of_nat n) = x ^R IZR (Z.of_nat n)now rewrite INR_IZR_INZ.x:Rz:ZHx:0 < xH:x <> 0n:nate:z = Z.of_nat nx ^R INR n = x ^R IZR (Z.of_nat n)x:Rz:ZHx:0 < xH:x <> 0n:nate:z = (- Z.of_nat n)%ZpowerRZ x (- Z.of_nat n) = x ^R IZR (- Z.of_nat n)x:Rz:ZHx:0 < xH:x <> 0n:nate:z = (- Z.of_nat n)%ZpowerRZ x (- Z.of_nat n) = / x ^R IZR (Z.of_nat n)now rewrite <- pow_powerRZ, <- INR_IZR_INZ, Rpower_pow. Qed.x:Rz:ZHx:0 < xH:x <> 0n:nate:z = (- Z.of_nat n)%Z/ powerRZ x (Z.of_nat n) = / x ^R IZR (Z.of_nat n)forall e n m : R, 1 <= e -> n <= m -> e ^R n <= e ^R mforall e n m : R, 1 <= e -> n <= m -> e ^R n <= e ^R me, n, m:RH:1 < eH1:n <= me ^R n <= e ^R me, n, m:RH:1 = eH1:n <= me ^R n <= e ^R me, n, m:RH:1 < eH1:n <= mn < m -> e ^R n <= e ^R me, n, m:RH:1 < eH1:n <= mn = m -> e ^R n <= e ^R me, n, m:RH:1 = eH1:n <= me ^R n <= e ^R me, n, m:RH:1 < eH1:n <= mn = m -> e ^R n <= e ^R me, n, m:RH:1 = eH1:n <= me ^R n <= e ^R mnow rewrite <- H; unfold Rpower; rewrite ln_1, !Rmult_0_r; apply Rle_refl. Qed.e, n, m:RH:1 = eH1:n <= me ^R n <= e ^R m/ 2 < ln 2/ 2 < ln 20 < 22 * / 2 < 2 * ln 22 * / 2 < 2 * ln 21 < 2 * ln 22 <> 0exp 1 < exp (2 * ln 2)2 <> 03 < exp (2 * ln 2)2 <> 03 < 2 ^R (1 + 1)2 <> 03 < 2 * 20 < 22 <> 00 < 22 <> 0discrR. Qed. (*****************************************)2 <> 0
(*****************************************)forall (f g : R -> R) (D : R -> Prop) (l x : R), (forall x0 : R, D x0 -> f x0 = g x0) -> limit1_in f D l x -> limit1_in g D l xforall (f g : R -> R) (D : R -> Prop) (l x : R), (forall x0 : R, D x0 -> f x0 = g x0) -> limit1_in f D l x -> limit1_in g D l xf, g:R -> RD:R -> Propl, x:RH:forall x0 : R, D x0 -> f x0 = g x0(forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps)) -> forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) l < eps)f, g:R -> RD:R -> Propl, x:RH:forall x0 : R, D x0 -> f x0 = g x0H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps0)eps:RH1:eps > 0forall x0 : R, x0 > 0 /\ (forall x1 : Base R_met, D x1 /\ dist R_met x1 x < x0 -> dist R_met (f x1) l < eps) -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ dist R_met x1 x < alp -> dist R_met (g x1) l < eps)intros x1 [H4 H5]; rewrite <- H; auto. Qed.f, g:R -> RD:R -> Propl, x:RH:forall x1 : R, D x1 -> f x1 = g x1H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D x1 /\ dist R_met x1 x < alp -> dist R_met (f x1) l < eps0)eps:RH1:eps > 0x0:RH2:x0 > 0H3:forall x1 : Base R_met, D x1 /\ dist R_met x1 x < x0 -> dist R_met (f x1) l < epsforall x1 : Base R_met, D x1 /\ dist R_met x1 x < x0 -> dist R_met (g x1) l < epsforall (f : R -> R) (D D1 : R -> Prop) (l x : R), (forall x0 : R, D1 x0 -> D x0) -> limit1_in f D l x -> limit1_in f D1 l xforall (f : R -> R) (D D1 : R -> Prop) (l x : R), (forall x0 : R, D1 x0 -> D x0) -> limit1_in f D l x -> limit1_in f D1 l xf:R -> RD, D1:R -> Propl, x:RH:forall x0 : R, D1 x0 -> D x0(forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps)) -> forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D1 x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps)f:R -> RD, D1:R -> Propl, x:RH:forall x0 : R, D1 x0 -> D x0H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps0)eps:RH1:eps > 0forall x0 : R, x0 > 0 /\ (forall x1 : Base R_met, D x1 /\ dist R_met x1 x < x0 -> dist R_met (f x1) l < eps) -> exists alp : R, alp > 0 /\ (forall x1 : Base R_met, D1 x1 /\ dist R_met x1 x < alp -> dist R_met (f x1) l < eps)intros d [H4 H5]; apply H3; split; auto. Qed.f:R -> RD, D1:R -> Propl, x:RH:forall x0 : R, D1 x0 -> D x0H0:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alp -> dist R_met (f x0) l < eps0)eps:RH1:eps > 0alpha:RH2:alpha > 0H3:forall x0 : Base R_met, D x0 /\ dist R_met x0 x < alpha -> dist R_met (f x0) l < epsforall x0 : Base R_met, D1 x0 /\ dist R_met x0 x < alpha -> dist R_met (f x0) l < epsforall x y : R, x <> 0 -> y <> 0 -> / (x / y) = y / xforall x y : R, x <> 0 -> y <> 0 -> / (x / y) = y / xx, y:RH1:x <> 0H2:y <> 0/ x * / / y = y * / xx, y:RH1:x <> 0H2:y <> 0x <> 0x, y:RH1:x <> 0H2:y <> 0/ y <> 0x, y:RH1:x <> 0H2:y <> 0/ x * y = y * / xx, y:RH1:x <> 0H2:y <> 0y <> 0x, y:RH1:x <> 0H2:y <> 0x <> 0x, y:RH1:x <> 0H2:y <> 0/ y <> 0x, y:RH1:x <> 0H2:y <> 0y <> 0x, y:RH1:x <> 0H2:y <> 0x <> 0x, y:RH1:x <> 0H2:y <> 0/ y <> 0x, y:RH1:x <> 0H2:y <> 0x <> 0x, y:RH1:x <> 0H2:y <> 0/ y <> 0apply Rinv_neq_0_compat; assumption. Qed.x, y:RH1:x <> 0H2:y <> 0/ y <> 0forall y : R, 0 < y -> D_in ln Rinv (fun x : R => 0 < x) yforall y : R, 0 < y -> D_in ln Rinv (fun x : R => 0 < x) yy:RHy:0 < ylimit1_in (fun x : R => (ln x - ln y) / (x - y)) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yforall x : R, D_x (fun x0 : R => 0 < x0) y x -> / ((exp (ln x) - exp (ln y)) / (ln x - ln y)) = (ln x - ln y) / (x - y)y:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ ((x - y) / (ln x - ln y)) = (ln x - ln y) / (x - y)y:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ (x - y) * / / (ln x - ln y) = (ln x - ln y) * / (x - y)y:RHy:0 < yx:RHD1:0 < xHD2:y <> xx - y <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ (ln x - ln y) <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ (x - y) * (ln x - ln y) = (ln x - ln y) * / (x - y)y:RHy:0 < yx:RHD1:0 < xHD2:y <> xln x - ln y <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> xx - y <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ (ln x - ln y) <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> xln x - ln y <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> xx - y <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ (ln x - ln y) <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> xln x <> ln yy:RHy:0 < yx:RHD1:0 < xHD2:y <> xx - y <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ (ln x - ln y) <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> xH2:ln x = ln yy = xy:RHy:0 < yx:RHD1:0 < xHD2:y <> xx - y <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ (ln x - ln y) <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> xx - y <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ (ln x - ln y) <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x/ (ln x - ln y) <> 0y:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < yx:RHD1:0 < xHD2:y <> x0 < xy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < ylimit1_in (fun x : R => / ((exp (ln x) - exp (ln y)) / (ln x - ln y))) (D_x (fun x : R => 0 < x) y) (/ y) yy:RHy:0 < ylimit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (D_x (fun x : R => 0 < x) y) y yy:RHy:0 < yy <> 0y:RHy:0 < yforall x : R, D_x (fun x0 : R => 0 < x0) y x -> Dgf (D_x (fun x0 : R => 0 < x0) y) (D_x (fun _ : R => True) (ln y)) ln xy:RHy:0 < ylimit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y yy:RHy:0 < yy <> 0y:RHy:0 < yx:RH1:0 < xH2:y <> xD_x (fun x0 : R => 0 < x0) y xy:RHy:0 < yx:RH1:0 < xH2:y <> xD_x (fun _ : R => True) (ln y) (ln x)y:RHy:0 < ylimit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y yy:RHy:0 < yy <> 0y:RHy:0 < yx:RH1:0 < xH2:y <> xD_x (fun _ : R => True) (ln y) (ln x)y:RHy:0 < ylimit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y yy:RHy:0 < yy <> 0y:RHy:0 < yx:RH1:0 < xH2:y <> xln y <> ln xy:RHy:0 < ylimit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y yy:RHy:0 < yy <> 0y:RHy:0 < ylimit1_in (fun x : R => (exp (ln x) - exp (ln y)) / (ln x - ln y)) (Dgf (D_x (fun x : R => 0 < x) y) (D_x (fun _ : R => True) (ln y)) ln) y yy:RHy:0 < yy <> 0y:RHy:0 < ylimit1_in ln (D_x (fun x : R => 0 < x) y) (ln y) yy:RHy:0 < ylimit1_in (fun x : R => (exp x - exp (ln y)) / (x - ln y)) (D_x (fun _ : R => True) (ln y)) y (ln y)y:RHy:0 < yy <> 0y:RHy:0 < ylimit1_in (fun x : R => (exp x - exp (ln y)) / (x - ln y)) (D_x (fun _ : R => True) (ln y)) y (ln y)y:RHy:0 < yy <> 0y:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx > 0y:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsforall x0 : R, D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x -> Rabs ((exp x0 - exp (ln y)) / (x0 - ln y) - y) < epsy:RHy:0 < yy <> 0y:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsforall x0 : R, D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x -> Rabs ((exp x0 - exp (ln y)) / (x0 - ln y) - y) < epsy:RHy:0 < yy <> 0y:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < xRabs ((exp x0 - exp (ln y)) / (x0 - ln y) - exp (ln y)) < epsy:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x0 < yy:RHy:0 < yy <> 0y:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < xRabs ((exp (ln y + (x0 - ln y)) - exp (ln y)) / (x0 - ln y) - exp (ln y)) < epsy:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x0 < yy:RHy:0 < yy <> 0y:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < xx0 - ln y <> 0y:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < xRabs (x0 - ln y) < xy:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x0 < yy:RHy:0 < yy <> 0y:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < xRabs (x0 - ln y) < xy:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x0 < yy:RHy:0 < yy <> 0y:RHy:0 < yH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < eps0eps:RH:eps > 0x:posrealH1:forall h : R, h <> 0 -> Rabs h < x -> Rabs ((exp (ln y + h) - exp (ln y)) / h - exp (ln y)) < epsx0:RH2:D_x (fun _ : R => True) (ln y) x0 /\ Rabs (x0 - ln y) < x0 < yy:RHy:0 < yy <> 0red; intro; rewrite H in Hy; elim (Rlt_irrefl _ Hy). Qed.y:RHy:0 < yy <> 0forall x : R, 0 < x -> derivable_pt_lim ln x (/ x)forall x : R, 0 < x -> derivable_pt_lim ln x (/ x)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):R0 < alpx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alpexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((ln (x + h) - ln x) / h - / x) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):Rr:x0 <= x / 20 < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):Rn:~ x0 <= x / 20 < x / 2x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alpexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((ln (x + h) - ln x) / h - / x) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):Rn:~ x0 <= x / 20 < x / 2x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alpexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((ln (x + h) - ln x) / h - / x) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alpexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((ln (x + h) - ln x) / h - / x) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs ((ln (x + h) - ln x) / (x + h - x) - / x) < epsx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}D_x (fun x1 : R => 0 < x1) x (x + h)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}0 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0Rabs h < x / 2x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 20 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0Rabs h < alpx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0alp <= x / 2x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 20 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0alp <= x / 2x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 20 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 20 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 20 < x / 2x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 2x / 2 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 2x / 2 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:- h < x / 2x / 2 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 2h < 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:- h < x / 2- h - x / 2 + x / 2 < - h - x / 2 + (x + h)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 2h < 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:- h < x / 2- h < - h - x / 2 + (x + h)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 2h < 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:- h < x / 2- h < - h - x / 2 + (x / 2 + x / 2 + h)x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 2h < 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hlt:h < 0H7:Rabs h < x / 2h < 0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Hgt:h >= 00 < x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}x <> x + hx:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0replace (x + h - x) with h; [ apply Rlt_le_trans with alp; [ apply H6 | unfold alp; apply Rmin_l ] | ring ]. Qed.x:RH:0 < xH0:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < alp0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < eps0)eps:RH1:0 < epsx0:RH2:x0 > 0H3:forall x1 : R, D_x (fun x2 : R => 0 < x2) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((ln x1 - ln x) / (x1 - x) - / x) < epsalp:=Rmin x0 (x / 2):RH4:0 < alph:RH5:h <> 0H6:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (x + h - x) < x0forall (f g : R -> R) (D D1 : R -> Prop) (x : R), (forall x0 : R, D1 x0 -> D x0) -> D_in f g D x -> D_in f g D1 xforall (f g : R -> R) (D D1 : R -> Prop) (x : R), (forall x0 : R, D1 x0 -> D x0) -> D_in f g D x -> D_in f g D1 xf, g:R -> RD, D1:R -> Propx:RH:forall x0 : R, D1 x0 -> D x0limit1_in (fun x0 : R => (f x0 - f x) / (x0 - x)) (D_x D x) (g x) x -> limit1_in (fun x0 : R => (f x0 - f x) / (x0 - x)) (D_x D1 x) (g x) xintros x1 [H1 H2]; split; auto. Qed.f, g:R -> RD, D1:R -> Propx:RH:forall x0 : R, D1 x0 -> D x0H0:limit1_in (fun x0 : R => (f x0 - f x) / (x0 - x)) (D_x D x) (g x) xforall x0 : R, D_x D1 x x0 -> D_x D x x0forall (f g h : R -> R) (D : R -> Prop) (x : R), f x = g x -> D_in h f D x -> D_in h g D xforall (f g h : R -> R) (D : R -> Prop) (x : R), f x = g x -> D_in h f D x -> D_in h g D xrewrite H; auto. Qed.f, g, h:R -> RD:R -> Propx:RH:f x = g xlimit1_in (fun x0 : R => (h x0 - h x) / (x0 - x)) (D_x D x) (f x) x -> limit1_in (fun x0 : R => (h x0 - h x) / (x0 - x)) (D_x D x) (g x) xforall y z : R, 0 < y -> D_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (fun x : R => 0 < x) yforall y z : R, 0 < y -> D_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (fun x : R => 0 < x) yy, z:RH:0 < yforall x : R, 0 < x -> Dgf (fun x0 : R => 0 < x0) (fun _ : R => True) ln xy, z:RH:0 < yD_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) yy, z:RH:0 < yx:RH0:0 < x0 < xy, z:RH:0 < yD_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) yy, z:RH:0 < yD_in (fun x : R => x ^R z) (fun x : R => z * x ^R (z - 1)) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) yy, z:RH:0 < y/ y * (z * exp (z * ln y)) = z * y ^R (z - 1)y, z:RH:0 < yD_in (fun x : R => x ^R z) (fun x : R => / x * (z * exp (z * ln x))) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) yy, z:RH:0 < yD_in (fun x : R => x ^R z) (fun x : R => / x * (z * exp (z * ln x))) (Dgf (fun x : R => 0 < x) (fun _ : R => True) ln) yy, z:RH:0 < yD_in ln Rinv (fun x : R => 0 < x) yy, z:RH:0 < yD_in (fun x : R => exp (z * x)) (fun x : R => z * exp (z * x)) (fun _ : R => True) (ln y)y, z:RH:0 < yD_in (fun x : R => exp (z * x)) (fun x : R => z * exp (z * x)) (fun _ : R => True) (ln y)y, z:RH:0 < yforall x : R, True -> Dgf (fun _ : R => True) (fun _ : R => True) (fun x0 : R => z * x0) xy, z:RH:0 < yD_in (fun x : R => exp (z * x)) (fun x : R => z * exp (z * x)) (Dgf (fun _ : R => True) (fun _ : R => True) (fun x : R => z * x)) (ln y)y, z:RH:0 < yD_in (fun x : R => exp (z * x)) (fun x : R => z * exp (z * x)) (Dgf (fun _ : R => True) (fun _ : R => True) (fun x : R => z * x)) (ln y)y, z:RH:0 < yD_in (fun x : R => z * x) (fun _ : R => z) (fun _ : R => True) (ln y)y, z:RH:0 < yD_in exp exp (fun _ : R => True) (z * ln y)y, z:RH:0 < yz * 1 = zy, z:RH:0 < yD_in (fun x : R => z * x) (fun _ : R => z * 1) (fun _ : R => True) (ln y)y, z:RH:0 < yD_in exp exp (fun _ : R => True) (z * ln y)y, z:RH:0 < yD_in (fun x : R => z * x) (fun _ : R => z * 1) (fun _ : R => True) (ln y)y, z:RH:0 < yD_in exp exp (fun _ : R => True) (z * ln y)assert (H0 := derivable_pt_lim_D_in exp exp (z * ln y)); elim H0; clear H0; intros _ H0; apply H0; apply derivable_pt_lim_exp. Qed.y, z:RH:0 < yD_in exp exp (fun _ : R => True) (z * ln y)forall x y : R, 0 < x -> derivable_pt_lim (fun x0 : R => x0 ^R y) x (y * x ^R (y - 1))forall x y : R, 0 < x -> derivable_pt_lim (fun x0 : R => x0 ^R y) x (y * x ^R (y - 1))x, y:RH:0 < xderivable_pt_lim (fun x0 : R => x0 ^R y) x (y * x ^R (y - 1))x, y:RH:0 < xderivable_pt_lim (fun x0 : R => x0 ^R y) x (y * (x ^R y * x ^R (- (1))))x, y:RH:0 < xderivable_pt_lim (fun x0 : R => x0 ^R y) x (y * (x ^R y * / x ^R 1))x, y:RH:0 < xderivable_pt_lim (fun x0 : R => x0 ^R y) x (y * (x ^R y * / x))x, y:RH:0 < xderivable_pt_lim (fun x0 : R => x0 ^R y) x (y * x ^R y * / x)x, y:RH:0 < xderivable_pt_lim (fun x0 : R => exp (y * ln x0)) x (y * exp (y * ln x) * / x)x, y:RH:0 < xderivable_pt_lim ln x (/ x)x, y:RH:0 < xderivable_pt_lim (fun x0 : R => exp (y * x0)) (ln x) (y * exp (y * ln x))x, y:RH:0 < xderivable_pt_lim (fun x0 : R => exp (y * x0)) (ln x) (y * exp (y * ln x))x, y:RH:0 < xderivable_pt_lim (fun x0 : R => exp (y * x0)) (ln x) (exp (y * ln x) * y)x, y:RH:0 < xderivable_pt_lim (fun x0 : R => y * x0) (ln x) yx, y:RH:0 < xderivable_pt_lim exp (y * ln x) (exp (y * ln x))x, y:RH:0 < xderivable_pt_lim (fun x0 : R => y * x0) (ln x) (0 * ln x + y * 1)x, y:RH:0 < x0 * ln x + y * 1 = yx, y:RH:0 < xderivable_pt_lim exp (y * ln x) (exp (y * ln x))x, y:RH:0 < xderivable_pt_lim (fun _ : R => y) (ln x) 0x, y:RH:0 < xderivable_pt_lim (fun x0 : R => x0) (ln x) 1x, y:RH:0 < x0 * ln x + y * 1 = yx, y:RH:0 < xderivable_pt_lim exp (y * ln x) (exp (y * ln x))x, y:RH:0 < xderivable_pt_lim (fun x0 : R => x0) (ln x) 1x, y:RH:0 < x0 * ln x + y * 1 = yx, y:RH:0 < xderivable_pt_lim exp (y * ln x) (exp (y * ln x))x, y:RH:0 < x0 * ln x + y * 1 = yx, y:RH:0 < xderivable_pt_lim exp (y * ln x) (exp (y * ln x))apply derivable_pt_lim_exp. Qed. (* added later. *)x, y:RH:0 < xderivable_pt_lim exp (y * ln x) (exp (y * ln x))forall x y z : R, 0 < x -> 0 < y -> x ^R z * y ^R z = (x * y) ^R zrewrite <- exp_plus, ln_mult, Rmult_plus_distr_l; auto. Qed.x, y, z:Rx0:0 < xy0:0 < yexp (z * ln x) * exp (z * ln y) = exp (z * ln (x * y))a, b, c:R0 < c -> 0 < a < b -> a ^R c < b ^R ca, b, c:R0 < c -> 0 < a < b -> a ^R c < b ^R cnow apply Rmult_lt_compat_l; auto; apply ln_increasing; lra. Qed.a, b, c:Rc0:0 < ca0:0 < aab:a < bc * ln a < c * ln ba, b, c:R0 <= c -> 0 < a <= b -> a ^R c <= b ^R ca, b, c:R0 <= c -> 0 < a <= b -> a ^R c <= b ^R ca, b, c:Rc0:0 < c0 < a <= b -> a ^R c <= b ^R ca, b, c:Rc0:0 = cH:0 < a <= b0 < ba, b, c:Rc0:0 = cH:0 < a <= b0 < aa, b, c:Rc0:0 < ca0:0 < aab:a < ba ^R c <= b ^R ca, b, c:Rc0:0 < ca0:0 < aab:a = ba ^R c <= b ^R ca, b, c:Rc0:0 = cH:0 < a <= b0 < ba, b, c:Rc0:0 = cH:0 < a <= b0 < aa, b, c:Rc0:0 < ca0:0 < aab:a = ba ^R c <= b ^R ca, b, c:Rc0:0 = cH:0 < a <= b0 < ba, b, c:Rc0:0 = cH:0 < a <= b0 < aa, b, c:Rc0:0 = cH:0 < a <= b0 < ba, b, c:Rc0:0 = cH:0 < a <= b0 < atauto. Qed. (* arcsinh function *) Definition arcsinh x := ln (x + sqrt (x ^ 2 + 1)).a, b, c:Rc0:0 = cH:0 < a <= b0 < aforall x : R, arcsinh (sinh x) = xx:Rln ((exp x - exp (- x)) / 2 + sqrt (((exp x - exp (- x)) / 2) ^ 2 + 1)) = xx:RRminus_eq_0:forall r : R, r - r = 0ln ((exp x - exp (- x)) / 2 + sqrt (((exp x - exp (- x)) / 2) ^ 2 + 1)) = xx:RRminus_eq_0:forall r : R, r - r = 0ln ((exp x + - exp (- x)) / 2 + sqrt (((exp x + - exp (- x)) / 2) ^ 2 + exp (x + - x))) = xx:RRminus_eq_0:forall r : R, r - r = 0ln ((exp x + - exp (- x)) / 2 + sqrt (((exp x + - exp (- x)) / 2) ^ 2 + exp x * exp (- x))) = xx:RRminus_eq_0:forall r : R, r - r = 0ln ((exp x + - exp (- x)) / 2 + sqrt (((exp x + exp (- x)) / 2) ^ 2)) = xx:RRminus_eq_0:forall r : R, r - r = 0ln ((exp x + - exp (- x)) / 2 + (exp x + exp (- x)) / 2) = xrewrite ln_exp; reflexivity. Qed.x:RRminus_eq_0:forall r : R, r - r = 0ln (exp x) = xx:Rsinh (arcsinh x) = xx:R(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:R0 < x + sqrt (x ^ 2 + 1)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rr:x <= 00 < x + sqrt (x ^ 2 + 1)x:Rn:~ x <= 00 < x + sqrt (x ^ 2 + 1)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rr:x <= 00 < x + sqrt ((- x) ^ 2 + 1)x:Rn:~ x <= 00 < x + sqrt (x ^ 2 + 1)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rr:x <= 0sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)x:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)0 < x + sqrt ((- x) ^ 2 + 1)x:Rn:~ x <= 00 < x + sqrt (x ^ 2 + 1)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rr:x <= 00 <= (- x) ^ 2 < (- x) ^ 2 + 1x:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)0 < x + sqrt ((- x) ^ 2 + 1)x:Rn:~ x <= 00 < x + sqrt (x ^ 2 + 1)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)0 < x + sqrt ((- x) ^ 2 + 1)x:Rn:~ x <= 00 < x + sqrt (x ^ 2 + 1)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)0 < - sqrt ((- x) ^ 2) + sqrt ((- x) ^ 2 + 1)x:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)- sqrt ((- x) ^ 2) = xx:Rn:~ x <= 00 < x + sqrt (x ^ 2 + 1)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)- sqrt ((- x) ^ 2) = xx:Rn:~ x <= 00 < x + sqrt (x ^ 2 + 1)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rn:~ x <= 00 < x + sqrt (x ^ 2 + 1)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rcmp:0 < x + sqrt (x ^ 2 + 1)(exp (ln (x + sqrt (x ^ 2 + 1))) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rcmp:0 < x + sqrt (x ^ 2 + 1)(x + sqrt (x ^ 2 + 1) - exp (- ln (x + sqrt (x ^ 2 + 1)))) / 2 = xx:Rcmp:0 < x + sqrt (x ^ 2 + 1)(x + sqrt (x ^ 2 + 1) - / (x + sqrt (x ^ 2 + 1))) / 2 = xx:Rcmp:0 < x + sqrt (x ^ 2 + 1)Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z(x + sqrt (x ^ 2 + 1) - / (x + sqrt (x ^ 2 + 1))) / 2 = xx:Rcmp:0 < x + sqrt (x ^ 2 + 1)Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z(x + sqrt (x ^ 2 + 1)) * / 2 - / (x + sqrt (x ^ 2 + 1)) * / 2 - x = 0x:Rcmp:0 < x + sqrt (x ^ 2 + 1)Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * zforall x0 y z : R, x0 - z = y -> x0 - y - z = 0x:Rcmp:0 < x + sqrt (x ^ 2 + 1)Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z(x + sqrt (x ^ 2 + 1)) * / 2 - x = / (x + sqrt (x ^ 2 + 1)) * / 2x:Rcmp:0 < x + sqrt (x ^ 2 + 1)Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z(x + sqrt (x ^ 2 + 1)) * / 2 - x = / (x + sqrt (x ^ 2 + 1)) * / 2x:Rcmp:0 < x + sqrt (x ^ 2 + 1)Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * z2 * (x + sqrt (x ^ 2 + 1)) * ((x + sqrt (x ^ 2 + 1)) * / 2 - x) = 2 * (x + sqrt (x ^ 2 + 1)) * (/ (x + sqrt (x ^ 2 + 1)) * / 2)x:Rcmp:0 < x + sqrt (x ^ 2 + 1)Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * zpow2_sqrt:forall x0 : R, 0 <= x0 -> sqrt x0 ^ 2 = x02 * (x + sqrt (x ^ 2 + 1)) * ((x + sqrt (x ^ 2 + 1)) * / 2 - x) = 2 * (x + sqrt (x ^ 2 + 1)) * (/ (x + sqrt (x ^ 2 + 1)) * / 2)apply Rplus_le_le_0_compat;[simpl; rewrite Rmult_1_r; apply (Rle_0_sqr x)|apply Rlt_le, Rlt_0_1]. Qed.x:Rcmp:0 < x + sqrt (x ^ 2 + 1)Rmult_minus_distr_r:forall x0 y z : R, (x0 - y) * z = x0 * z - y * zpow2_sqrt:forall x0 : R, 0 <= x0 -> sqrt x0 ^ 2 = x00 <= x ^ 2 + 1forall x : R, derivable_pt_lim arcsinh x (/ sqrt (x ^ 2 + 1))x:Rderivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:R0 < x + sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:Rr:x <= 00 < x + sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:Rr:x <= 00 < x + sqrt ((- x) ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:Rr:x <= 0sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)x:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)0 < x + sqrt ((- x) ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:Rr:x <= 00 <= (- x) ^ 2 < (- x) ^ 2 + 1x:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)0 < x + sqrt ((- x) ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)0 < x + sqrt ((- x) ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)0 < - sqrt ((- x) ^ 2) + sqrt ((- x) ^ 2 + 1)x:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)- sqrt ((- x) ^ 2) = xx:RH:0 < x + sqrt (x ^ 2 + 1)derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:Rr:x <= 0H:sqrt ((- x) ^ 2) < sqrt ((- x) ^ 2 + 1)- sqrt ((- x) ^ 2) = xx:RH:0 < x + sqrt (x ^ 2 + 1)derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:RH:0 < x + sqrt (x ^ 2 + 1)derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:RH:0 < x + sqrt (x ^ 2 + 1)0 < x ^ 2 + 1x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ sqrt (x ^ 2 + 1))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun x0 : R => ln (x0 + sqrt (x0 ^ 2 + 1))) x (/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun x0 : R => x0 + sqrt (x0 ^ 2 + 1)) x (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun x0 : R => x0) x 1x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun x0 : R => sqrt (x0 ^ 2 + 1)) x (/ (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun x0 : R => sqrt (x0 ^ 2 + 1)) x (/ (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun x0 : R => x0 ^ 2 + 1) x (INR 2 * x ^ 1 + 0)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim sqrt (x ^ 2 + 1) (/ (2 * sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun x0 : R => x0 ^ 2) x (INR 2 * x ^ 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun _ : R => 1) x 0x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim sqrt (x ^ 2 + 1) (/ (2 * sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim (fun _ : R => 1) x 0x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim sqrt (x ^ 2 + 1) (/ (2 * sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim sqrt (x ^ 2 + 1) (/ (2 * sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1derivable_pt_lim ln (x + sqrt (x ^ 2 + 1)) (/ (x + sqrt (x ^ 2 + 1)))x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (INR 2 * x ^ 1 + 0)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * (1 + / (2 * sqrt (x ^ 2 + 1)) * (2 * x)) = / sqrt (x ^ 2 + 1)x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1/ (x + sqrt (x ^ 2 + 1)) * ((sqrt (x ^ 2 + 1) + x) / sqrt (x ^ 2 + 1)) = / sqrt (x ^ 2 + 1)rewrite <- Rmult_assoc, Rinv_r;[field | ]; apply Rgt_not_eq; auto; apply sqrt_lt_R0; assumption. Qed.x:RH:0 < x + sqrt (x ^ 2 + 1)H0:0 < x ^ 2 + 1(x + sqrt (x ^ 2 + 1)) * (/ (x + sqrt (x ^ 2 + 1)) * ((sqrt (x ^ 2 + 1) + x) / sqrt (x ^ 2 + 1))) = (x + sqrt (x ^ 2 + 1)) * / sqrt (x ^ 2 + 1)forall x y : R, x < y -> arcsinh x < arcsinh yx, y:Rxy:x < yarcsinh x < arcsinh yx, y:Rxy:x < yarcsinh y <= arcsinh x -> arcsinh x < arcsinh yx, y:Rxy:x < yabs:arcsinh y <= arcsinh xy <= xx, y:Rxy:x < yabs:arcsinh y <= arcsinh xsinh (arcsinh y) <= sinh (arcsinh x)apply Rlt_le, sinh_lt; assumption. Qed.x, y:Rxy:x < ylt:arcsinh y < arcsinh xsinh (arcsinh y) <= sinh (arcsinh x)forall x y : R, x <= y -> arcsinh x <= arcsinh yx, y:Rxy:x < yarcsinh x <= arcsinh yx, y:Rxqy:x = yarcsinh x <= arcsinh yrewrite xqy; apply Rle_refl. Qed.x, y:Rxqy:x = yarcsinh x <= arcsinh yunfold arcsinh; rewrite pow_ne_zero, !Rplus_0_l, sqrt_1, ln_1; [reflexivity | discriminate]. Qed.arcsinh 0 = 0