Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Sumbool. Require Import Rbase. Require Import Rfunctions. Require Import SeqSeries. Require Import Ranalysis1. Local Open Scope R_scope. Fixpoint Dichotomy_lb (x y:R) (P:R -> bool) (N:nat) {struct N} : R := match N with | O => x | S n => let down := Dichotomy_lb x y P n in let up := Dichotomy_ub x y P n in let z := (down + up) / 2 in if P z then down else z end with Dichotomy_ub (x y:R) (P:R -> bool) (N:nat) {struct N} : R := match N with | O => y | S n => let down := Dichotomy_lb x y P n in let up := Dichotomy_ub x y P n in let z := (down + up) / 2 in if P z then z else up end. Definition dicho_lb (x y:R) (P:R -> bool) (N:nat) : R := Dichotomy_lb x y P N. Definition dicho_up (x y:R) (P:R -> bool) (N:nat) : R := Dichotomy_ub x y P N. (**********)forall (x y : R) (P : R -> bool) (n : nat), x <= y -> dicho_lb x y P n <= dicho_up x y P nforall (x y : R) (P : R -> bool) (n : nat), x <= y -> dicho_lb x y P n <= dicho_up x y P nx, y:RP:R -> booln:natH:x <= ydicho_lb x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= ydicho_lb x y P 0 <= dicho_up x y P 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P ndicho_lb x y P (S n) <= dicho_up x y P (S n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P ndicho_lb x y P (S n) <= dicho_up x y P (S n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then Dichotomy_lb x y P n else (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) <= (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 else Dichotomy_ub x y P n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P nDichotomy_lb x y P n <= (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n0 < 2x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n2 * Dichotomy_lb x y P n <= 2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n2 * Dichotomy_lb x y P n <= 2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n2 * Dichotomy_lb x y P n <= (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 * 2x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n2 * Dichotomy_lb x y P n <= (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * 1x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n2 * Dichotomy_lb x y P n <= Dichotomy_lb x y P n + Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P nDichotomy_lb x y P n + Dichotomy_lb x y P n <= Dichotomy_lb x y P n + Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P nDichotomy_lb x y P n <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n0 < 2x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2) <= 2 * Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2) <= 2 * Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 * 2 <= 2 * Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) * 1 <= 2 * Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P nDichotomy_lb x y P n + Dichotomy_ub x y P n <= 2 * Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P nDichotomy_lb x y P n + Dichotomy_ub x y P n <= Dichotomy_ub x y P n + Dichotomy_ub x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P nDichotomy_ub x y P n + Dichotomy_lb x y P n <= Dichotomy_ub x y P n + Dichotomy_ub x y P nassumption. Qed.x, y:RP:R -> booln:natH:x <= yHrecn:dicho_lb x y P n <= dicho_up x y P nDichotomy_lb x y P n <= Dichotomy_ub x y P nforall (x y : R) (P : R -> bool), x <= y -> Un_growing (dicho_lb x y P)forall (x y : R) (P : R -> bool), x <= y -> Un_growing (dicho_lb x y P)x, y:RP:R -> boolH:x <= yUn_growing (dicho_lb x y P)x, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= dicho_lb x y P (S n)x, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n <= dicho_lb x y P (S n)x, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n <= (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then Dichotomy_lb x y P n else (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2)x, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n <= Dichotomy_lb x y P nx, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n <= (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2x, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n <= (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2x, y:RP:R -> boolH:x <= yn:nat0 < 2x, y:RP:R -> boolH:x <= yn:nat2 * dicho_lb x y P n <= 2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2)x, y:RP:R -> boolH:x <= yn:nat2 * dicho_lb x y P n <= 2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2)x, y:RP:R -> boolH:x <= yn:nat2 * dicho_lb x y P n <= (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 * 2x, y:RP:R -> boolH:x <= yn:nat2 * dicho_lb x y P n <= (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * 1x, y:RP:R -> boolH:x <= yn:nat2 * dicho_lb x y P n <= Dichotomy_lb x y P n + Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n + dicho_lb x y P n <= Dichotomy_lb x y P n + Dichotomy_ub x y P nreplace (Dichotomy_ub x y P n) with (dicho_up x y P n); [ apply dicho_comp; assumption | reflexivity ]. Qed.x, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n <= Dichotomy_ub x y P nforall (x y : R) (P : R -> bool), x <= y -> Un_decreasing (dicho_up x y P)forall (x y : R) (P : R -> bool), x <= y -> Un_decreasing (dicho_up x y P)x, y:RP:R -> boolH:x <= yUn_decreasing (dicho_up x y P)x, y:RP:R -> boolH:x <= yforall n : nat, dicho_up x y P (S n) <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natdicho_up x y P (S n) <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:nat(if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 else Dichotomy_ub x y P n) <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:nat(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:nat0 < 2x, y:RP:R -> boolH:x <= yn:nat2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2) <= 2 * dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:nat2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2) <= 2 * dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:nat(Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 * 2 <= 2 * dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:nat(Dichotomy_lb x y P n + Dichotomy_ub x y P n) * 1 <= 2 * dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_lb x y P n + Dichotomy_ub x y P n <= 2 * dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_lb x y P n + Dichotomy_ub x y P n <= dicho_up x y P n + dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_lb x y P n + dicho_up x y P n <= dicho_up x y P n + dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n + dicho_up x y P n <= dicho_up x y P n + dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natdicho_up x y P n + dicho_lb x y P n <= dicho_up x y P n + dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nright; reflexivity. Qed.x, y:RP:R -> boolH:x <= yn:natDichotomy_ub x y P n <= dicho_up x y P nforall (x y : R) (P : R -> bool), x <= y -> forall n : nat, dicho_lb x y P n <= yforall (x y : R) (P : R -> bool), x <= y -> forall n : nat, dicho_lb x y P n <= yx, y:RP:R -> boolH:x <= yn:natdicho_lb x y P n <= yx, y:RP:R -> boolH:x <= ydicho_lb x y P 0 <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= ydicho_lb x y P (S n) <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= ydicho_lb x y P (S n) <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y(if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then Dichotomy_lb x y P n else (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= yDichotomy_lb x y P n <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y0 < 2x, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2) <= 2 * yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2) <= 2 * yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y(Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 * 2 <= 2 * yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= yDichotomy_lb x y P n + Dichotomy_ub x y P n <= 2 * yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= yDichotomy_lb x y P n <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= yDichotomy_ub x y P n <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= yDichotomy_ub x y P n <= yx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= yDichotomy_ub x y P n <= Dichotomy_ub x y P 0x, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= yUn_decreasing (Dichotomy_ub x y P)x, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y(0 <= n)%natx, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= yH0:Un_decreasing (dicho_up x y P)Un_decreasing (Dichotomy_ub x y P)x, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y(0 <= n)%natapply le_O_n. Qed.x, y:RP:R -> boolH:x <= yn:natHrecn:dicho_lb x y P n <= y(0 <= n)%natforall (x y : R) (P : R -> bool), x <= y -> has_ub (dicho_lb x y P)forall (x y : R) (P : R -> bool), x <= y -> has_ub (dicho_lb x y P)x, y:RP:R -> boolH:x <= yhas_ub (dicho_lb x y P)x, y:RP:R -> boolH:x <= y(forall n : nat, dicho_lb x y P n <= y) -> has_ub (dicho_lb x y P)x, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= yx, y:RP:R -> boolH:x <= yH0:forall n : nat, dicho_lb x y P n <= yhas_ub (dicho_lb x y P)x, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= yx, y:RP:R -> boolH:x <= yH0:forall n : nat, dicho_lb x y P n <= ybound (EUn (dicho_lb x y P))x, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= yx, y:RP:R -> boolH:x <= yH0:forall n : nat, dicho_lb x y P n <= yexists m : R, is_upper_bound (EUn (dicho_lb x y P)) mx, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= yx, y:RP:R -> boolH:x <= yH0:forall n : nat, dicho_lb x y P n <= yis_upper_bound (EUn (dicho_lb x y P)) yx, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= yx, y:RP:R -> boolH:x <= yH0:forall n : nat, dicho_lb x y P n <= yforall x0 : R, EUn (dicho_lb x y P) x0 -> x0 <= yx, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= yx, y:RP:R -> boolH:x <= yH0:forall n : nat, dicho_lb x y P n <= yx0:RH1:EUn (dicho_lb x y P) x0x0 <= yx, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= yx, y:RP:R -> boolH:x <= yH0:forall n : nat, dicho_lb x y P n <= yx0:RH1:EUn (dicho_lb x y P) x0x1:natH2:x0 = dicho_lb x y P x1x0 <= yx, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= yapply dicho_lb_maj_y; assumption. Qed.x, y:RP:R -> boolH:x <= yforall n : nat, dicho_lb x y P n <= yforall (x y : R) (P : R -> bool), x <= y -> forall n : nat, x <= dicho_up x y P nforall (x y : R) (P : R -> bool), x <= y -> forall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yn:natx <= dicho_up x y P nx, y:RP:R -> boolH:x <= yx <= dicho_up x y P 0x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= dicho_up x y P (S n)x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= dicho_up x y P (S n)x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 else Dichotomy_ub x y P n)x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P n0 < 2x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P n2 * x <= 2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2)x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P n2 * x <= 2 * ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2)x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P n2 * x <= (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 * 2x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P n2 * x <= Dichotomy_lb x y P n + Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_lb x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nDichotomy_lb x y P 0 <= Dichotomy_lb x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nUn_growing (Dichotomy_lb x y P)x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P n(0 <= n)%natx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nH0:Un_growing (dicho_lb x y P)Un_growing (Dichotomy_lb x y P)x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P n(0 <= n)%natx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P n(0 <= n)%natx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nx, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nassumption. Qed.x, y:RP:R -> boolH:x <= yn:natHrecn:x <= dicho_up x y P nx <= Dichotomy_ub x y P nforall (x y : R) (P : R -> bool), x <= y -> has_lb (dicho_up x y P)forall (x y : R) (P : R -> bool), x <= y -> has_lb (dicho_up x y P)x, y:RP:R -> boolH:x <= yhas_lb (dicho_up x y P)x, y:RP:R -> boolH:x <= y(forall n : nat, x <= dicho_up x y P n) -> has_lb (dicho_up x y P)x, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nhas_lb (dicho_up x y P)x, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nbound (EUn (opp_seq (dicho_up x y P)))x, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nexists m : R, is_upper_bound (EUn (opp_seq (dicho_up x y P))) mx, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nis_upper_bound (EUn (opp_seq (dicho_up x y P))) (- x)x, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nforall x0 : R, EUn (opp_seq (dicho_up x y P)) x0 -> x0 <= - xx, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nx0:RH1:EUn (opp_seq (dicho_up x y P)) x0x0 <= - xx, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nx0:RH1:EUn (opp_seq (dicho_up x y P)) x0x1:natH2:x0 = opp_seq (dicho_up x y P) x1x0 <= - xx, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nx0:RH1:EUn (opp_seq (dicho_up x y P)) x0x1:natH2:x0 = opp_seq (dicho_up x y P) x1opp_seq (dicho_up x y P) x1 <= - xx, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nx0:RH1:EUn (opp_seq (dicho_up x y P)) x0x1:natH2:x0 = opp_seq (dicho_up x y P) x1- dicho_up x y P x1 <= - xx, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nx, y:RP:R -> boolH:x <= yH0:forall n : nat, x <= dicho_up x y P nx0:RH1:EUn (opp_seq (dicho_up x y P)) x0x1:natH2:x0 = opp_seq (dicho_up x y P) x1x <= dicho_up x y P x1x, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P napply dicho_up_min_x; assumption. Qed.x, y:RP:R -> boolH:x <= yforall n : nat, x <= dicho_up x y P nforall (x y : R) (P : R -> bool), x <= y -> {l : R | Un_cv (dicho_lb x y P) l}forall (x y : R) (P : R -> bool), x <= y -> {l : R | Un_cv (dicho_lb x y P) l}x, y:RP:R -> boolH:x <= y{l : R | Un_cv (dicho_lb x y P) l}x, y:RP:R -> boolH:x <= yUn_growing (dicho_lb x y P)x, y:RP:R -> boolH:x <= yhas_ub (dicho_lb x y P)apply dicho_lb_maj; assumption. Qed.x, y:RP:R -> boolH:x <= yhas_ub (dicho_lb x y P)forall (x y : R) (P : R -> bool), x <= y -> {l : R | Un_cv (dicho_up x y P) l}forall (x y : R) (P : R -> bool), x <= y -> {l : R | Un_cv (dicho_up x y P) l}x, y:RP:R -> boolH:x <= y{l : R | Un_cv (dicho_up x y P) l}x, y:RP:R -> boolH:x <= yUn_decreasing (dicho_up x y P)x, y:RP:R -> boolH:x <= yhas_lb (dicho_up x y P)apply dicho_up_min; assumption. Qed.x, y:RP:R -> boolH:x <= yhas_lb (dicho_up x y P)forall (x y : R) (P : R -> bool) (n : nat), x <= y -> dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nforall (x y : R) (P : R -> bool) (n : nat), x <= y -> dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nx, y:RP:R -> booln:natH:x <= ydicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nx, y:RP:R -> boolH:x <= ydicho_up x y P 0 - dicho_lb x y P 0 = (y - x) / 2 ^ 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ ndicho_up x y P (S n) - dicho_lb x y P (S n) = (y - x) / 2 ^ S nx, y:RP:R -> boolH:x <= yy - x = (y - x) / 1x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ ndicho_up x y P (S n) - dicho_lb x y P (S n) = (y - x) / 2 ^ S nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ ndicho_up x y P (S n) - dicho_lb x y P (S n) = (y - x) / 2 ^ S nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 else Dichotomy_ub x y P n) - (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then Dichotomy_lb x y P n else (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 - Dichotomy_lb x y P n = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P n = (y - x) * / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = (y - x) * / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(y - x) / 2 ^ n * / 2 = (y - x) * / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(y - x) * / 2 ^ n * / 2 = (y - x) * / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(y - x) * / 2 ^ n * / 2 = (y - x) * (/ 2 * / 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 ^ n <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 ^ n <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 ^ n <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = (Dichotomy_lb x y P n + Dichotomy_ub x y P n) * / 2 - Dichotomy_lb x y P nx, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ nDichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = (y - x) / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(y - x) / 2 ^ n * / 2 = (y - x) * / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(y - x) * / 2 ^ n * / 2 = (y - x) * / (2 * 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(y - x) * / 2 ^ n * / 2 = (y - x) * (/ 2 * / 2 ^ n)x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 ^ n <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 ^ n <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n2 ^ n <> 0x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2pattern (Dichotomy_ub x y P n) at 1; rewrite (double_var (Dichotomy_ub x y P n)); unfold dicho_up, dicho_lb, Rminus, Rdiv; ring. Qed. Definition pow_2_n (n:nat) := 2 ^ n.x, y:RP:R -> booln:natH:x <= yHrecn:dicho_up x y P n - dicho_lb x y P n = (y - x) / 2 ^ n(dicho_up x y P n - dicho_lb x y P n) / 2 = Dichotomy_ub x y P n - (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2forall n : nat, pow_2_n n <> 0forall n : nat, pow_2_n n <> 0n:natpow_2_n n <> 0n:nat2 ^ n <> 0discrR. Qed.n:nat2 <> 0Un_growing pow_2_nUn_growing pow_2_nforall n : nat, pow_2_n n <= pow_2_n (S n)n:natpow_2_n n <= pow_2_n (S n)n:nat2 ^ n <= 2 ^ n * 2 ^ 1n:nat2 ^ n * 1 <= 2 ^ n * 2 ^ 1n:nat0 <= 2 ^ nn:nat1 <= 2 ^ 1n:nat1 <= 2 ^ 1n:nat1 <= 2 * 1pattern 1 at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; left; apply Rlt_0_1. Qed.n:nat1 <= 2cv_infty pow_2_ncv_infty pow_2_n(forall N : nat, INR N <= 2 ^ N) -> cv_infty pow_2_nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ Ncv_infty pow_2_nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ Nforall M : R, exists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ NM:Rexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ NM:RHlt:0 < Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Zexists N0 : nat, forall n : nat, (N0 <= n)%nat -> M < pow_2_n nH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%Z -> exists N0 : nat, forall n : nat, (N0 <= n)%nat -> M < pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%Zexists N0 : nat, forall n : nat, (N0 <= n)%nat -> M < pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0exists N1 : nat, forall n : nat, (N1 <= n)%nat -> M < pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0forall n : nat, (N0 <= n)%nat -> M < pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natM < pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natM < INR N0H:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natINR N0 <= pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natM < IZR (Z.of_nat N0)H:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natINR N0 <= pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natM < IZR NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natINR N0 <= pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natM < IZR (up M)H:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natINR N0 <= pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natH3:IZR (up M) > M /\ IZR (up M) - M <= 1M < IZR (up M)H:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natINR N0 <= pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natINR N0 <= pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natINR N0 <= pow_2_n N0H:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natpow_2_n N0 <= pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natpow_2_n N0 <= pow_2_n nH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natpow_2_n n >= pow_2_n N0H:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%natUn_growing pow_2_nH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%nat(n >= N0)%natH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N1 : nat, INR N1 <= 2 ^ N1M:RHlt:0 < MN:=up M:ZH0:(0 <= N)%ZN0:natH1:N = Z.of_nat N0n:natH2:(N0 <= n)%nat(n >= N0)%natH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z(0 <= N)%ZH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z0 <= IZR NH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z0 <= IZR (up M)H:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:Z0 <= IZR (up M)H:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N0 : nat, INR N0 <= 2 ^ N0M:RHlt:0 < MN:=up M:ZH0:IZR (up M) > M /\ IZR (up M) - M <= 1H1:IZR (up M) > MH2:IZR (up M) - M <= 10 <= IZR (up M)H:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ Nexists N : nat, forall n : nat, (N <= n)%nat -> 0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ Nn:natH0:(0 <= n)%nat0 < pow_2_n nH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mexists N : nat, forall n : nat, (N <= n)%nat -> M < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mn:natH0:(0 <= n)%natM < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mn:natH0:(0 <= n)%natM < 0H:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mn:natH0:(0 <= n)%nat0 < pow_2_n nforall N : nat, INR N <= 2 ^ NH:forall N : nat, INR N <= 2 ^ NM:RHgt:0 > Mn:natH0:(0 <= n)%nat0 < pow_2_n nforall N : nat, INR N <= 2 ^ Nforall N : nat, INR N <= 2 ^ NN:natINR 0 <= 2 ^ 0N:natforall n : nat, INR n <= 2 ^ n -> INR (S n) <= 2 ^ S nN:nat0 <= 1N:natforall n : nat, INR n <= 2 ^ n -> INR (S n) <= 2 ^ S nN:natforall n : nat, INR n <= 2 ^ n -> INR (S n) <= 2 ^ S nN, n:natH:INR n <= 2 ^ nINR (S n) <= 2 ^ S nN, n:natH:INR n <= 2 ^ nINR (S n) <= 2 ^ (n + 1)N, n:natH:INR n <= 2 ^ nINR n + 1 <= 2 ^ n * 2 ^ 1N, n:natH:INR n <= 2 ^ nINR n + 1 <= 2 ^ n * (2 * 1)N, n:natH:INR n <= 2 ^ nINR n + 1 <= 2 ^ n * 2N, n:natH:INR n <= 2 ^ nINR n + 1 <= 2 ^ nN, n:natH:INR n <= 2 ^ n2 ^ n <= 2 ^ n * 2N, n:natH:INR n <= 2 ^ n1 + INR n <= 2 ^ nN, n:natH:INR n <= 2 ^ n2 ^ n <= 2 ^ n * 2N, n:natH:INR n <= 2 ^ n1 + INR n * 1 <= 2 ^ nN, n:natH:INR n <= 2 ^ n2 ^ n <= 2 ^ n * 2N, n:natH:INR n <= 2 ^ n0 < 1N, n:natH:INR n <= 2 ^ n2 ^ n <= 2 ^ n * 2N, n:natH:INR n <= 2 ^ n2 ^ n <= 2 ^ n * 2N, n:natH:INR n <= 2 ^ n2 ^ n + 0 <= 2 ^ n * 2N, n:natH:INR n <= 2 ^ n2 ^ n + 0 <= 2 * 2 ^ nN, n:natH:INR n <= 2 ^ n2 ^ n + 0 <= 2 ^ n + 2 ^ nleft; apply pow_lt; prove_sup0. Qed.N, n:natH:INR n <= 2 ^ n0 <= 2 ^ nforall (x y l1 l2 : R) (P : R -> bool), x <= y -> Un_cv (dicho_lb x y P) l1 -> Un_cv (dicho_up x y P) l2 -> l1 = l2forall (x y l1 l2 : R) (P : R -> bool), x <= y -> Un_cv (dicho_lb x y P) l1 -> Un_cv (dicho_up x y P) l2 -> l1 = l2x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2l1 = l2x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)l1 = l2x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) 0 -> l1 = l2x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)H3:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) 0l1 = l2x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)H3:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) 0H4:l1 - l2 = 0l1 = l2x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hlt:x < yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - x -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - xexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x) -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps / (y - x)exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natRabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natRabs (dicho_lb x y P n - dicho_up x y P n) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natRabs (- (dicho_lb x y P n - dicho_up x y P n)) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natRabs (dicho_up x y P n - dicho_lb x y P n) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natRabs ((y - x) / 2 ^ n) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natRabs (y - x) * Rabs (/ 2 ^ n) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%nat(y - x) * Rabs (/ 2 ^ n) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x >= 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%nat0 < / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%nat/ (y - x) * ((y - x) * Rabs (/ 2 ^ n)) < / (y - x) * epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x >= 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%nat/ (y - x) * ((y - x) * Rabs (/ 2 ^ n)) < / (y - x) * epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x >= 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%nat1 * Rabs (/ 2 ^ n) < / (y - x) * epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x <> 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x >= 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natRabs (/ 2 ^ n) < / (y - x) * epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x <> 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x >= 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x <> 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x >= 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%naty - x >= 0x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%nat0 <= y - xx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= x + (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (/ pow_2_n n0 - 0) < eps0Hlt:x < yHyp:0 < y - xH5:0 < eps / (y - x)N:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (/ pow_2_n n0 - 0) < eps / (y - x)n:natH7:(n >= N)%natx <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yHyp:0 < y - x0 < eps / (y - x)x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < y0 < y - xy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (/ pow_2_n n - 0) < eps0Hlt:x < yx < x + (y - x)y, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n0 : nat => / pow_2_n n0) 0n:natH5:(n >= 0)%natRabs (dicho_lb y y P n - dicho_up y y P n - 0) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n0 : nat => / pow_2_n n0) 0n:natH5:(n >= 0)%natRabs (dicho_lb y y P n - dicho_up y y P n) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n0 : nat => / pow_2_n n0) 0n:natH5:(n >= 0)%natRabs (- (dicho_lb y y P n - dicho_up y y P n)) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n0 : nat => / pow_2_n n0) 0n:natH5:(n >= 0)%natRabs (dicho_up y y P n - dicho_lb y y P n) < epsx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n0 : nat => / pow_2_n n0) 0n:natH5:(n >= 0)%natRabs ((y - y) / 2 ^ n) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n0 : nat => / pow_2_n n0) 0n:natH5:(n >= 0)%naty <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epsy, l1, l2:RP:R -> boolH2:Un_cv (fun i : nat => dicho_lb y y P i - dicho_up y y P i) (l1 - l2)H1:Un_cv (dicho_up y y P) l2H0:Un_cv (dicho_lb y y P) l1H:y <= yeps:RH3:eps > 0H4:Un_cv (fun n0 : nat => / pow_2_n n0) 0n:natH5:(n >= 0)%naty <= yx, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < epselim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H Hgt)). Qed. Definition cond_positivity (x:R) : bool := match Rle_dec 0 x with | left _ => true | right _ => false end.x, y, l1, l2:RP:R -> boolH:x <= yH0:Un_cv (dicho_lb x y P) l1H1:Un_cv (dicho_up x y P) l2H2:Un_cv (fun i : nat => dicho_lb x y P i - dicho_up x y P i) (l1 - l2)eps:RH3:eps > 0H4:Un_cv (fun n : nat => / pow_2_n n) 0Hgt:x > yexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (dicho_lb x y P n - dicho_up x y P n - 0) < eps
Sequential characterisation of continuity
forall (f : R -> R) (Un : nat -> R) (l : R), continuity_pt f l -> Un_cv Un l -> Un_cv (fun i : nat => f (Un i)) (f l)forall (f : R -> R) (Un : nat -> R) (l : R), continuity_pt f l -> Un_cv Un l -> Un_cv (fun i : nat => f (Un i)) (f l)forall (f : R -> R) (Un : nat -> R) (l : R), limit1_in f (D_x no_cond l) (f l) l -> (forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Un n) l < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (f (Un n)) (f l) < epsforall (f : R -> R) (Un : nat -> R) (l : R), limit_in R_met R_met f (D_x no_cond l) l (f l) -> (forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Un n) l < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (f (Un n)) (f l) < epsforall (f : R -> R) (Un : nat -> R) (l : R), (forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x : Base R_met, D_x no_cond l x /\ dist R_met x l < alp -> dist R_met (f x) (f l) < eps)) -> (forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Un n) l < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (f (Un n)) (f l) < epsforall (f : R -> R) (Un : nat -> R) (l : R), (forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x : Base R_met, D_x no_cond l x /\ (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) x l < alp -> (let (Base, dist, _, _, _, _) as m return (Base m -> Base m -> R) := R_met in dist) (f x) (f l) < eps)) -> (forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Un n) l < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (f (Un n)) (f l) < epsforall (f : R -> R) (Un : nat -> R) (l : R), (forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond l x /\ R_dist x l < alp -> R_dist (f x) (f l) < eps)) -> (forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Un n) l < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (f (Un n)) (f l) < epsforall (f : R -> R) (Un : nat -> R) (l : R), (forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)) -> (forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l) < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Un n) - f l) < epsf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l) < eps0eps:RH1:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Un n) - f l) < epsf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Un n) - f l) < epsf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (Un n - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsexists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Un n) - f l) < epsf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (Un n - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n : nat, (n >= N)%nat -> Rabs (Un n - l) < alpexists N0 : nat, forall n : nat, (n >= N0)%nat -> Rabs (f (Un n) - f l) < epsf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natRabs (f (Un n) - f l) < epsf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n = lRabs (f (Un n) - f l) < epsf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lRabs (f (Un n) - f l) < epsf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lRabs (f (Un n) - f l) < epsf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lD_x no_cond l (Un n) /\ Rabs (Un n - l) < alpf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lD_x no_cond l (Un n)f:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lRabs (Un n - l) < alpf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lTrue /\ l <> Un nf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lRabs (Un n - l) < alpf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lTruef:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> ll <> Un nf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lRabs (Un n - l) < alpf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> ll <> Un nf:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lRabs (Un n - l) < alpapply H5; assumption. Qed.f:R -> RUn:nat -> Rl:RH:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp0 -> Rabs (f x - f l) < eps0)H0:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (Un n0 - l) < eps0eps:RH1:eps > 0alp:RH2:alp > 0 /\ (forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < eps)H3:alp > 0H4:forall x : R, D_x no_cond l x /\ Rabs (x - l) < alp -> Rabs (f x - f l) < epsN:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (Un n0 - l) < alpn:natH6:(n >= N)%natH7:Un n <> lRabs (Un n - l) < alpforall (x y : R) (P : R -> bool) (n : nat), P x = false -> P (dicho_lb x y P n) = falseforall (x y : R) (P : R -> bool) (n : nat), P x = false -> P (dicho_lb x y P n) = falsex, y:RP:R -> booln:natH:P x = falseP (dicho_lb x y P n) = falsex, y:RP:R -> boolH:P x = falseP (dicho_lb x y P 0) = falsex, y:RP:R -> booln:natH:P x = falseHrecn:P (dicho_lb x y P n) = falseP (dicho_lb x y P (S n)) = falseassumption.x, y:RP:R -> boolH:P x = falseP (dicho_lb x y P 0) = falsex, y:RP:R -> booln:natH:P x = falseHrecn:P (dicho_lb x y P n) = falseP (dicho_lb x y P (S n)) = falsex, y:RP:R -> booln:natH:P x = falseHrecn:P (dicho_lb x y P n) = falseP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then Dichotomy_lb x y P n else (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falsex, y:RP:R -> booln:natH:P x = falseHrecn:P (dicho_lb x y P n) = falseHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = trueP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then Dichotomy_lb x y P n else (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falsex, y:RP:R -> booln:natH:P x = falseHrecn:P (dicho_lb x y P n) = falseHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falseP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then Dichotomy_lb x y P n else (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falsex, y:RP:R -> booln:natH:P x = falseHrecn:P (dicho_lb x y P n) = falseHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = trueP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then Dichotomy_lb x y P n else (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falseunfold dicho_lb in Hrecn; assumption.x, y:RP:R -> booln:natH:P x = falseHrecn:P (dicho_lb x y P n) = falseHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = trueP (Dichotomy_lb x y P n) = falsex, y:RP:R -> booln:natH:P x = falseHrecn:P (dicho_lb x y P n) = falseHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falseP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then Dichotomy_lb x y P n else (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falseassumption. Qed.x, y:RP:R -> booln:natH:P x = falseHrecn:P (dicho_lb x y P n) = falseHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falseP ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falseforall (x y : R) (P : R -> bool) (n : nat), P y = true -> P (dicho_up x y P n) = trueforall (x y : R) (P : R -> bool) (n : nat), P y = true -> P (dicho_up x y P n) = truex, y:RP:R -> booln:natH:P y = trueP (dicho_up x y P n) = truex, y:RP:R -> boolH:P y = trueP (dicho_up x y P 0) = truex, y:RP:R -> booln:natH:P y = trueHrecn:P (dicho_up x y P n) = trueP (dicho_up x y P (S n)) = trueassumption.x, y:RP:R -> boolH:P y = trueP (dicho_up x y P 0) = truex, y:RP:R -> booln:natH:P y = trueHrecn:P (dicho_up x y P n) = trueP (dicho_up x y P (S n)) = truex, y:RP:R -> booln:natH:P y = trueHrecn:P (dicho_up x y P n) = trueP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 else Dichotomy_ub x y P n) = truex, y:RP:R -> booln:natH:P y = trueHrecn:P (dicho_up x y P n) = trueHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = trueP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 else Dichotomy_ub x y P n) = truex, y:RP:R -> booln:natH:P y = trueHrecn:P (dicho_up x y P n) = trueHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falseP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 else Dichotomy_ub x y P n) = truex, y:RP:R -> booln:natH:P y = trueHrecn:P (dicho_up x y P n) = trueHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = trueP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 else Dichotomy_ub x y P n) = trueunfold dicho_lb in Hrecn; assumption.x, y:RP:R -> booln:natH:P y = trueHrecn:P (dicho_up x y P n) = trueHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = trueP ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = truex, y:RP:R -> booln:natH:P y = trueHrecn:P (dicho_up x y P n) = trueHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falseP (if P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) then (Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2 else Dichotomy_ub x y P n) = trueassumption. Qed. (* A general purpose corollary. *)x, y:RP:R -> booln:natH:P y = trueHrecn:P (dicho_up x y P n) = trueHeq:P ((Dichotomy_lb x y P n + Dichotomy_ub x y P n) / 2) = falseP (Dichotomy_ub x y P n) = trueforall a : R, Un_cv (fun n : nat => a / 2 ^ n) 0a:RUn_cv (fun n : nat => a * / 2 ^ n) (a * 0)a:RUn_cv (fun _ : nat => a) aa:RUn_cv (fun i : nat => / 2 ^ i) 0exact (cv_infty_cv_R0 pow_2_n pow_2_n_neq_R0 pow_2_n_infty). Qed.a:RUn_cv (fun i : nat => / 2 ^ i) 0
Intermediate Value Theorem
forall (f : R -> R) (x y : R), continuity f -> x < y -> f x < 0 -> 0 < f y -> {z : R | x <= z <= y /\ f z = 0}forall (f : R -> R) (x y : R), continuity f -> x < y -> f x < 0 -> 0 < f y -> {z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x1{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x1x0:Rp:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x1x0:Rp:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x <= x0 <= y /\ f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x <= x0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x <= x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x <= dicho_lb x y (fun z : R => cond_positivity (f z)) 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0dicho_lb x y (fun z : R => cond_positivity (f z)) 0 <= x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x <= xf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0dicho_lb x y (fun z : R => cond_positivity (f z)) 0 <= x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0dicho_lb x y (fun z : R => cond_positivity (f z)) 0 <= x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Un_growing (dicho_lb x y (fun z : R => cond_positivity (f z)))f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0x0 <= dicho_up x y (fun z : R => cond_positivity (f z)) 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0dicho_up x y (fun z : R => cond_positivity (f z)) 0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Un_decreasing (dicho_up x y (fun z : R => cond_positivity (f z)))f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0dicho_up x y (fun z : R => cond_positivity (f z)) 0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0dicho_up x y (fun z : R => cond_positivity (f z)) 0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0dicho_up x y (fun z : R => cond_positivity (f z)) 0 <= yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> Rf x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> Rf x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R((forall n : nat, f (Vn n) <= 0) -> f x0 <= 0) -> f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R((forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0) -> ((forall n : nat, f (Vn n) <= 0) -> f x0 <= 0) -> f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0(forall n : nat, f (Vn n) <= 0) -> f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0(forall n : nat, 0 <= f (Wn n)) -> (forall n : nat, f (Vn n) <= 0) -> f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, 0 <= f (Wn n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0H7:forall n : nat, 0 <= f (Wn n)H8:forall n : nat, f (Vn n) <= 0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, 0 <= f (Wn n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0H7:forall n : nat, 0 <= f (Wn n)H8:forall n : nat, f (Vn n) <= 0H9:f x0 <= 0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, 0 <= f (Wn n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0H7:forall n : nat, 0 <= f (Wn n)H8:forall n : nat, f (Vn n) <= 0H9:f x0 <= 0H10:0 <= f x0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, 0 <= f (Wn n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, 0 <= f (Wn n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:nat0 <= f (Wn n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:nat0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:nat(forall z : R, cond_positivity z = true <-> 0 <= z) -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natforall z : R, cond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natH7:forall z : R, cond_positivity z = true <-> 0 <= z0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natforall z : R, cond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natH7:forall z : R, cond_positivity z = true <-> 0 <= zH8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = true0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natforall z : R, cond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natH7:forall z : R, cond_positivity z = true <-> 0 <= zH8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = trueH9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natforall z : R, cond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natH7:forall z : R, cond_positivity z = true <-> 0 <= zH8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = trueH9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = truecond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = truef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natforall z : R, cond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natH7:forall z : R, cond_positivity z = true <-> 0 <= zH8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = trueH9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = truecond_positivity (f y) = truef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natforall z : R, cond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natH7:forall z : R, cond_positivity z = true <-> 0 <= zH8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = trueH9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = trueH11:cond_positivity (f y) = true -> 0 <= f yH12:0 <= f y -> cond_positivity (f y) = truecond_positivity (f y) = truef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natforall z : R, cond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natH7:forall z : R, cond_positivity z = true <-> 0 <= zH8:(fun z : R => cond_positivity (f z)) y = true -> (fun z : R => cond_positivity (f z)) (dicho_up x y (fun z : R => cond_positivity (f z)) n) = trueH9:cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = true -> 0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n)H10:0 <= f (dicho_up x y (fun z : R => cond_positivity (f z)) n) -> cond_positivity (f (dicho_up x y (fun z : R => cond_positivity (f z)) n)) = trueH11:cond_positivity (f y) = true -> 0 <= f yH12:0 <= f y -> cond_positivity (f y) = true0 <= f yf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natforall z : R, cond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natforall z : R, cond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:Rcond_positivity z = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:R(if Rle_dec 0 z then true else false) = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHle:0 <= ztrue = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHnle:~ 0 <= zfalse = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHle:0 <= ztrue = true -> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHle:0 <= z0 <= z -> true = truef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHnle:~ 0 <= zfalse = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHle:0 <= z0 <= z -> true = truef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHnle:~ 0 <= zfalse = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHnle:~ 0 <= zfalse = true <-> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHnle:~ 0 <= zfalse = true -> 0 <= zf:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHnle:~ 0 <= z0 <= z -> false = truef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHnle:~ 0 <= z0 <= z -> false = truef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0n:natz:RHnle:~ 0 <= zH7:0 <= zfalse = truef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (Vn n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall n : nat, f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0(forall z : R, cond_positivity z = false <-> z < 0) -> forall n : nat, f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0H7:forall z : R, cond_positivity z = false <-> z < 0n:natf (dicho_lb x y (fun z : R => cond_positivity (f z)) n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0H7:forall z : R, cond_positivity z = false <-> z < 0n:natH8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = falsef (dicho_lb x y (fun z : R => cond_positivity (f z)) n) <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0H7:forall z : R, cond_positivity z = false <-> z < 0n:natH8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = falsef (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0H7:forall z : R, cond_positivity z = false <-> z < 0n:natH8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = falseH9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = falsef (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0H7:forall z : R, cond_positivity z = false <-> z < 0n:natH8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = falseH9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = falsecond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = falsef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0H7:forall z : R, cond_positivity z = false <-> z < 0n:natH8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = falseH9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = falsecond_positivity (f x) = falsef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0H7:forall z : R, cond_positivity z = false <-> z < 0n:natH8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = falseH9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = falseH11:cond_positivity (f x) = false -> f x < 0H12:f x < 0 -> cond_positivity (f x) = falsecond_positivity (f x) = falsef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n0 : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n0:nat -> RWn:=fun n0 : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n0:nat -> RH5:(forall n0 : nat, 0 <= f (Wn n0)) -> 0 <= f x0H6:(forall n0 : nat, f (Vn n0) <= 0) -> f x0 <= 0H7:forall z : R, cond_positivity z = false <-> z < 0n:natH8:(fun z : R => cond_positivity (f z)) x = false -> (fun z : R => cond_positivity (f z)) (dicho_lb x y (fun z : R => cond_positivity (f z)) n) = falseH9:cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = false -> f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0H10:f (dicho_lb x y (fun z : R => cond_positivity (f z)) n) < 0 -> cond_positivity (f (dicho_lb x y (fun z : R => cond_positivity (f z)) n)) = falseH11:cond_positivity (f x) = false -> f x < 0H12:f x < 0 -> cond_positivity (f x) = falsef x < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0forall z : R, cond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:Rcond_positivity z = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:R(if Rle_dec 0 z then true else false) = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHle:0 <= ztrue = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHnle:~ 0 <= zfalse = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHle:0 <= ztrue = false -> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHle:0 <= zz < 0 -> true = falsef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHnle:~ 0 <= zfalse = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHle:0 <= zz < 0 -> true = falsef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHnle:~ 0 <= zfalse = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHnle:~ 0 <= zfalse = false <-> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHnle:~ 0 <= zfalse = false -> z < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHnle:~ 0 <= zz < 0 -> false = falsef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z0 : R => cond_positivity (f z0))) x0p:Un_cv (dicho_up x y (fun z0 : R => cond_positivity (f z0))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z0 : R => cond_positivity (f z0)) n:nat -> RH5:(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0H6:(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0z:RHnle:~ 0 <= zz < 0 -> false = falsef:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0 -> (forall n : nat, 0 <= f (Wn n)) -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:Un_cv (fun i : nat => f (Wn i)) (f x0)0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:Un_cv (fun i : nat => f (Wn i)) (f x0)Hlt:0 < f x00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:Un_cv (fun i : nat => f (Wn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:Un_cv (fun i : nat => f (Wn i)) (f x0)Hgt:0 > f x00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:Un_cv (fun i : nat => f (Wn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:Un_cv (fun i : nat => f (Wn i)) (f x0)Hgt:0 > f x00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:Un_cv (fun i : nat => f (Wn i)) (f x0)Hgt:0 > f x00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0 -> 0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%nat0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:f (Wn x2) - f x0 < - f x00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x0f (Wn x2) - f x0 >= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:f (Wn x2) - f x0 < - f x0 + 00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x0f (Wn x2) - f x0 >= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:- f x0 + f (Wn x2) < - f x0 + 00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x0f (Wn x2) - f x0 >= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:- f x0 + f (Wn x2) < - f x0 + 0H12:f (Wn x2) < 00 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x0f (Wn x2) - f x0 >= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:- f x0 + f (Wn x2) < - f x0 + 0H12:f (Wn x2) < 0H13:0 <= f (Wn x2)0 <= f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x0f (Wn x2) - f x0 >= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x0f (Wn x2) - f x0 >= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x00 <= f (Wn x2)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x0H8:0 < - f x0x2:natH9:forall n : nat, (n >= x2)%nat -> Rabs (f (Wn n) - f x0) < - f x0H10:(x2 >= x2)%natH11:Rabs (f (Wn x2) - f x0) < - f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Wn x0H6:forall n : nat, 0 <= f (Wn n)H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Wn n) - f x0) < epsHgt:0 > f x00 < - f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Wn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> R(forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0 -> (forall n : nat, f (Vn n) <= 0) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hlt:0 < f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natf x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:- (f (Vn x2) - f x0) < f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:- (f (Vn x2) - f x0) < f x0 + 0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 - f (Vn x2) < f x0 + 0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 + - f (Vn x2) < f x0 + 0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 + - f (Vn x2) < f x0 + 0H11:- f (Vn x2) < 0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 + - f (Vn x2) < f x0 + 0H11:- f (Vn x2) < 0H12:f (Vn x2) <= 0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 + - f (Vn x2) < f x0 + 0H11:- f (Vn x2) < 0H12:f (Vn x2) <= 00 < f (Vn x2) -> f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 + - f (Vn x2) < f x0 + 0H11:- f (Vn x2) < 0H12:f (Vn x2) <= 00 < f (Vn x2)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 + - f (Vn x2) < f x0 + 0H11:- f (Vn x2) < 0H12:f (Vn x2) <= 0H13:0 < f (Vn x2)f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 + - f (Vn x2) < f x0 + 0H11:- f (Vn x2) < 0H12:f (Vn x2) <= 00 < f (Vn x2)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 + - f (Vn x2) < f x0 + 0H11:- f (Vn x2) < 0H12:f (Vn x2) <= 00 < f (Vn x2)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:f x0 + - f (Vn x2) < f x0 + 0H11:- f (Vn x2) < 0H12:f (Vn x2) <= 00 < - - f (Vn x2)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f (Vn x2) - f x0 < 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x0f x0 - f (Vn x2) + (f (Vn x2) - f x0) < f x0 - f (Vn x2) + 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x00 < f x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x00 <= - f (Vn x2)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (f (Vn n) - f x0) < epsHlt:0 < f x0x2:natH8:forall n : nat, (n >= x2)%nat -> Rabs (f (Vn n) - f x0) < f x0H9:(x2 >= x2)%natH10:Rabs (f (Vn x2) - f x0) < f x00 <= - f (Vn x2)f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RH5:Un_cv Vn x0H6:forall n : nat, f (Vn n) <= 0H7:Un_cv (fun i : nat => f (Vn i)) (f x0)Hgt:0 > f x0f x0 <= 0f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0unfold Vn; assumption. Qed.f:R -> Rx, y:RH:continuity fH0:x < yH1:f x < 0H2:0 < f yH3:x <= yx1, x0:Rp0:Un_cv (dicho_lb x y (fun z : R => cond_positivity (f z))) x0p:Un_cv (dicho_up x y (fun z : R => cond_positivity (f z))) x0H4:x1 = x0Vn:=fun n : nat => dicho_lb x y (fun z : R => cond_positivity (f z)) n:nat -> RWn:=fun n : nat => dicho_up x y (fun z : R => cond_positivity (f z)) n:nat -> RUn_cv Vn x0forall (f : R -> R) (x y : R), continuity f -> x <= y -> f x * f y <= 0 -> {z : R | x <= z <= y /\ f z = 0}forall (f : R -> R) (x y : R), continuity f -> x <= y -> f x * f y <= 0 -> {z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHlty:0 < f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHeqy:0 = f yx <= y <= y /\ f y = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHeqy:0 = f yx <= y <= yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHeqy:0 = f yf y = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHeqy:0 = f yf y = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < y -> {z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0 -> {z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F y -> (- f)%F x < 0 -> {z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}H4:0 < (- f)%F yH5:(- f)%F x < 0{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}H4:0 < (- f)%F yH5:(- f)%F x < 0x0:RH6:x <= x0 <= yH7:(- f)%F x0 = 0{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}H4:0 < (- f)%F yH5:(- f)%F x < 0x0:RH6:x <= x0 <= yH7:(- f)%F x0 = 0x <= x0 <= y /\ f x0 = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}H4:0 < (- f)%F yH5:(- f)%F x < 0x0:RH6:x <= x0 <= yH7:(- f)%F x0 = 0x <= x0 <= yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}H4:0 < (- f)%F yH5:(- f)%F x < 0x0:RH6:x <= x0 <= yH7:(- f)%F x0 = 0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}H4:0 < (- f)%F yH5:(- f)%F x < 0x0:RH6:x <= x0 <= yH7:(- f)%F x0 = 0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}H4:0 < (- f)%F yH5:(- f)%F x < 0x0:RH6:x <= x0 <= yH7:- f x0 = 0f x0 = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}H4:0 < (- f)%F yH5:(- f)%F x < 0x0:RH6:x <= x0 <= yH7:- f x0 = 0- - f x0 = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}0 < (- f)%F yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}(- f)%F x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yH3:(- f)%F x < 0 -> 0 < (- f)%F y -> {z : R | x <= z <= y /\ (- f)%F z = 0}- f x < 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x < yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x = yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f xHgty:0 > f yH2:x = yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hltx:0 < f yHgty:0 > f yH2:x = yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f xx <= x <= y /\ f x = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f xx <= x <= yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f xf x = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Heqx:0 = f xf x = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f x{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHlty:0 < f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHlty:0 < f yx < y -> {z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHlty:0 < f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHlty:0 < f yH2:x < y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHlty:0 < f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHlty:0 < f yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHlty:0 < f yH2:x < yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHlty:0 < f yH2:x = yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHlty:0 < f yH2:x = yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f yHlty:0 < f yH2:x = yx < yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f yx <= y <= y /\ f y = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f yx <= y <= yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f yf y = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHeqy:0 = f yf y = 0f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y0 < f x * f y -> {z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y0 < f x * f yf:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f yH2:0 < f x * f y{z : R | x <= z <= y /\ f z = 0}f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y0 < f x * f yrewrite <- Rmult_opp_opp; apply Rmult_lt_0_compat; apply Ropp_0_gt_lt_contravar; assumption. Qed.f:R -> Rx, y:RH:continuity fH0:x <= yH1:f x * f y <= 0Hgtx:0 > f xHgty:0 > f y0 < f x * f y
We can now define the square root function as the reciprocal
transformation of the square function
forall y : R, 0 <= y -> {z : R | 0 <= z /\ y = z²}forall y : R, 0 <= y -> {z : R | 0 <= z /\ y = z²}y:RH:0 <= y{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> R{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0 -> {z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity f -> {z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity f{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1{z : R | 0 <= z /\ y = z²}f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1 -> {z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0 -> {z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1H3:f 0 * f 1 <= 0{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1H3:f 0 * f 1 <= 0X:{z : R | 0 <= z <= 1 /\ f z = 0}{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1H3:f 0 * f 1 <= 0X:{z : R | 0 <= z <= 1 /\ f z = 0}t:RH4:0 <= t <= 1 /\ f t = 0{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1H3:f 0 * f 1 <= 0X:{z : R | 0 <= z <= 1 /\ f z = 0}t:RH4:0 <= t <= 1 /\ f t = 00 <= t /\ y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1H3:f 0 * f 1 <= 0X:{z : R | 0 <= z <= 1 /\ f z = 0}t:RH4:0 <= t <= 1 /\ f t = 0H5:0 <= t <= 1H6:f t = 00 <= t /\ y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1H3:f 0 * f 1 <= 0X:{z : R | 0 <= z <= 1 /\ f z = 0}t:RH4:0 <= t <= 1 /\ f t = 0H5:0 <= t <= 1H6:f t = 00 <= ty:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1H3:f 0 * f 1 <= 0X:{z : R | 0 <= z <= 1 /\ f z = 0}t:RH4:0 <= t <= 1 /\ f t = 0H5:0 <= t <= 1H6:f t = 0y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1H3:f 0 * f 1 <= 0X:{z : R | 0 <= z <= 1 /\ f z = 0}t:RH4:0 <= t <= 1 /\ f t = 0H5:0 <= t <= 1H6:f t = 0y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1H3:f 0 * f 1 <= 0X:{z : R | 0 <= z <= 1 /\ f z = 0}t:RH4:0 <= t <= 1 /\ f t = 0H5:0 <= t <= 1H6:t² - y = 0y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 0 * f 1 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1H2:0 <= f 1f 1 * f 0 <= f 1 * 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= f 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= 1² - yf:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 10 <= 1 - yf:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHlt:y < 1y + 0 <= y + (1 - y)f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 1{z : R | 0 <= z /\ 1 = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 10 <= 1 /\ 1 = 1²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 10 <= 1f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 11 = 1²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0f:=fun x : R => x² - 1:R -> RH1:continuity fH0:f 0 <= 0H:0 <= 11 = 1²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f y -> {z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f y{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0 -> {z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yH3:f 0 * f y <= 0{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yH3:f 0 * f y <= 0X:{z : R | 0 <= z <= y /\ f z = 0}{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yH3:f 0 * f y <= 0X:{z : R | 0 <= z <= y /\ f z = 0}t:RH4:0 <= t <= y /\ f t = 0{z : R | 0 <= z /\ y = z²}y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yH3:f 0 * f y <= 0X:{z : R | 0 <= z <= y /\ f z = 0}t:RH4:0 <= t <= y /\ f t = 00 <= t /\ y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yH3:f 0 * f y <= 0X:{z : R | 0 <= z <= y /\ f z = 0}t:RH4:0 <= t <= y /\ f t = 0H5:0 <= t <= yH6:f t = 00 <= t /\ y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yH3:f 0 * f y <= 0X:{z : R | 0 <= z <= y /\ f z = 0}t:RH4:0 <= t <= y /\ f t = 0H5:0 <= t <= yH6:f t = 00 <= ty:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yH3:f 0 * f y <= 0X:{z : R | 0 <= z <= y /\ f z = 0}t:RH4:0 <= t <= y /\ f t = 0H5:0 <= t <= yH6:f t = 0y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yH3:f 0 * f y <= 0X:{z : R | 0 <= z <= y /\ f z = 0}t:RH4:0 <= t <= y /\ f t = 0H5:0 <= t <= yH6:f t = 0y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yH3:f 0 * f y <= 0X:{z : R | 0 <= z <= y /\ f z = 0}t:RH4:0 <= t <= y /\ f t = 0H5:0 <= t <= yH6:t² - y = 0y = t²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf 0 * f y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1H2:0 <= f yf y * f 0 <= f y * 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= f yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= y² - yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1y + 0 <= y + (y² - y)y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1y <= y²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 1y * 1 <= y²y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 10 <= yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 11 <= yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0H1:continuity fHgt:y > 11 <= yy:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity (Rsqr - fct_cte y)y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0(Rsqr - fct_cte y)%F = fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity Rsqry:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity (fct_cte y)y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0(Rsqr - fct_cte y)%F = fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0continuity (fct_cte y)y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0(Rsqr - fct_cte y)%F = fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> RH0:f 0 <= 0(Rsqr - fct_cte y)%F = fy:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> Rf 0 <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> R0 - y <= 0y:RH:0 <= yf:=fun x : R => x² - y:R -> R- y <= 0apply Ropp_0_le_ge_contravar; assumption. Qed. (* Definition of the square root: R+->R *) Definition Rsqrt (y:nonnegreal) : R := let (a,_) := Rsqrt_exists (nonneg y) (cond_nonneg y) in a. (**********)y:RH:0 <= yf:=fun x : R => x² - y:R -> R0 >= - yforall x : nonnegreal, 0 <= Rsqrt xforall x : nonnegreal, 0 <= Rsqrt xx:nonnegreal0 <= Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²0 <= Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = Rsqrt x -> 0 <= Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²H:x0 = Rsqrt x0 <= Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = (let (a, _) := Rsqrt_exists x (cond_nonneg x) in a)x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²x0 = x1x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²0 <= x0x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²0 <= x1x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²x0² = x1²x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²0 <= x1x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²x0² = x1²rewrite <- H0, <- H2; reflexivity. Qed. (**********)x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²x0² = x1²forall x : nonnegreal, Rsqrt x * Rsqrt x = xforall x : nonnegreal, Rsqrt x * Rsqrt x = xx:nonnegrealRsqrt x * Rsqrt x = xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²Rsqrt x * Rsqrt x = xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = Rsqrt x -> Rsqrt x * Rsqrt x = xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²H:x0 = Rsqrt xRsqrt x * Rsqrt x = xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²H:x0 = Rsqrt xx0 * x0 = xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = Rsqrt xx:nonnegrealx0:RH1:0 <= x0H2:x = x0²x0 = (let (a, _) := Rsqrt_exists x (cond_nonneg x) in a)x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²x0 = x1x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²0 <= x0x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²0 <= x1x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²x0² = x1²x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²0 <= x1x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²x0² = x1²rewrite <- H0, <- H2; reflexivity. Qed.x:nonnegrealx0:RH1:0 <= x0H2:x = x0²x1:RH:0 <= x1H0:x = x1²x0² = x1²