Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import SeqSeries. Require Import Rtrigo_def. Local Open Scope R_scope. (***************************************************************)
Using series definitions of cos and sin
(***************************************************************) Definition sin_term (a:R) (i:nat) : R := (-1) ^ i * (a ^ (2 * i + 1) / INR (fact (2 * i + 1))). Definition cos_term (a:R) (i:nat) : R := (-1) ^ i * (a ^ (2 * i) / INR (fact (2 * i))). Definition sin_approx (a:R) (n:nat) : R := sum_f_R0 (sin_term a) n. Definition cos_approx (a:R) (n:nat) : R := sum_f_R0 (cos_term a) n. (**********) (* Lemma Alt_PI_4 : Alt_PI <= 4. Proof. assert (H0 := PI_ineq 0). elim H0; clear H0; intros _ H0. unfold tg_alt, PI_tg in H0; simpl in H0. rewrite Rinv_1 in H0; rewrite Rmult_1_r in H0; unfold Rdiv in H0. apply Rmult_le_reg_l with (/ 4). apply Rinv_0_lt_compat; prove_sup0. rewrite <- Rinv_l_sym; [ rewrite Rmult_comm; assumption | discrR ]. Qed. *) (**********)forall (a : R) (n : nat), 0 <= a -> a <= 4 -> sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1))forall (a : R) (n : nat), 0 <= a -> a <= 4 -> sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a = 0sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0sin_approx a (2 * n + 1) <= sin a <= sin_approx a (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < a -> sum_f_R0 (sin_term a) (2 * n + 1) <= sin a <= sum_f_R0 (sin_term a) (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (sin_term a) (2 * n + 1) <= sin a <= sum_f_R0 (sin_term a) (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asin_term a 0 + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= sum_f_R0 (sin_term a) (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asin_term a 0 + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= sin_term a 0 + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_decreasing Una:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1)) -> a ^ (2 * S (S n0) + 1) / INR (fact (2 * S (S n0) + 1)) <= a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ S (S (2 * S n0 + 1)) / INR (fact (S (S (2 * S n0 + 1)))) <= a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) / INR (fact (S (S (2 * S n0 + 1)))) <= a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= a ^ (2 * S n0 + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a * a * / INR (fact (S (S (2 * S n0 + 1)))) <= / INR (fact (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a * a * / INR (fact (S (S (2 * S n0 + 1)))) <= / INR (fact (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 < INR (fact (S (S (2 * S n0 + 1))))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (S (S (2 * S n0 + 1)))) * (a * a * / INR (fact (S (S (2 * S n0 + 1))))) <= INR (fact (S (S (2 * S n0 + 1)))) * / INR (fact (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (S (S (2 * S n0 + 1)))) * (a * a * / INR (fact (S (S (2 * S n0 + 1))))) <= INR (fact (S (S (2 * S n0 + 1)))) * / INR (fact (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a * a * 1 <= INR (fact (2 * S (S n0) + 1)) * / INR (fact (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a * a <= INR (S (S (2 * S n0 + 1))) * (INR (S (2 * S n0 + 1)) * 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a * a <= INR (S (S (2 * S n0 + 1))) * INR (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a * a <= 4 * INR n0 * INR n0 + 18 * INR n0 + 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a * a <= 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))20 <= 4 * INR n0 * INR n0 + 18 * INR n0 + 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a * a <= 16a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))16 <= 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))20 <= 4 * INR n0 * INR n0 + 18 * INR n0 + 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a * a <= 4²a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))16 <= 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))20 <= 4 * INR n0 * INR n0 + 18 * INR n0 + 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a <= 4a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 4a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))16 <= 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))20 <= 4 * INR n0 * INR n0 + 18 * INR n0 + 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 4a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))16 <= 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))20 <= 4 * INR n0 * INR n0 + 18 * INR n0 + 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 4a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))16 <= 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))20 <= 4 * INR n0 * INR n0 + 18 * INR n0 + 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))16 <= 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))20 <= 4 * INR n0 * INR n0 + 18 * INR n0 + 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))20 <= 4 * INR n0 * INR n0 + 18 * INR n0 + 20a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 4 * INR n0 * INR n0 + 18 * INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 4 * INR n0 * INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 18 * INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 4 * INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 18 * INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 4a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 18 * INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 18 * INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 18 * INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 18 * INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= 18a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))0 <= INR n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S n0 + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))INR (fact (2 * S (S n0) + 1)) <> 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:natH3:(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a ^ (2 * S n0 + 1) * (a * a) = a ^ S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))n0:nat(2 * S (S n0) + 1)%nat = S (S (2 * S n0 + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv Un 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (a ^ n0 / INR (fact n0) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n0 : nat, (n0 >= N)%nat -> Rabs (a ^ n0 / INR (fact n0) - 0) < epsexists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)) - 0) < epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S n0 + 1 >= N)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(S (2 * S n0) >= N)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%natS (2 * S n0) = (2 * S n0 + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(N <= 2 * S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S n0 <= S (2 * S n0))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%natS (2 * S n0) = (2 * S n0 + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(N <= 2 * S N)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S N <= 2 * S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S n0 <= S (2 * S n0))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%natS (2 * S n0) = (2 * S n0 + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(N <= 2 * N)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * N <= 2 * S N)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S N <= 2 * S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S n0 <= S (2 * S n0))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%natS (2 * S n0) = (2 * S n0 + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * N <= 2 * S N)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S N <= 2 * S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S n0 <= S (2 * S n0))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%natS (2 * S n0) = (2 * S n0 + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S N <= 2 * S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S n0 <= S (2 * S n0))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%natS (2 * S n0) = (2 * S n0 + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%nat(2 * S n0 <= S (2 * S n0))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%natS (2 * S n0) = (2 * S n0 + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))H3:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < eps0eps:RH4:eps > 0N:natH5:forall n1 : nat, (n1 >= N)%nat -> Rabs (a ^ n1 / INR (fact n1) - 0) < epsn0:natH6:(n0 >= N)%natS (2 * S n0) = (2 * S n0 + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - sin a)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - (let (a0, _) := exist_sin a² in a * a0))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:sin_in a² xUn_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (a - a * x)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 0exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (tg_alt Un) n0 - (a - a * x)) < epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs a -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (tg_alt Un) n0 - (a - a * x)) < epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps / Rabs aexists N0 : nat, forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (tg_alt Un) n0 - (a - a * x)) < epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%natRabs (sum_f_R0 (tg_alt Un) n0 - (a - a * x)) < epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%natRabs (a * (1 - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0)) - (a - a * x)) < epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nata * (1 - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0)) = sum_f_R0 (tg_alt Un) n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat0 < / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat/ Rabs a * Rabs (a * - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0) + a * x) < / Rabs a * epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nata * (1 - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0)) = sum_f_R0 (tg_alt Un) n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat/ Rabs a * Rabs (a * - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0) + a * x) < / Rabs a * epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nata * (1 - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0)) = sum_f_R0 (tg_alt Un) n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%natRabs (/ a) * Rabs (a * - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0) + a * x) < / Rabs a * epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nata * (1 - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0)) = sum_f_R0 (tg_alt Un) n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%natRabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0) + - x) < eps * / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nata * (1 - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0)) = sum_f_R0 (tg_alt Un) n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 + - x) < eps * / Rabs an0:natH5:(n0 >= N)%natRabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0) + - x) < eps * / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nata * (1 - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0)) = sum_f_R0 (tg_alt Un) n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nata * (1 - sum_f_R0 (fun i : nat => sin_n i * a² ^ i) (S n0)) = sum_f_R0 (tg_alt Un) n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nata * (1 - (sin_n 0 * a² ^ 0 + sum_f_R0 (fun i : nat => sin_n (S i) * a² ^ S i) (Init.Nat.pred (S n0)))) = sum_f_R0 (tg_alt Un) n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat(0 < S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nata * (1 - (1 * a² ^ 0 + sum_f_R0 (fun i : nat => sin_n (S i) * a² ^ S i) (Init.Nat.pred (S n0)))) = sum_f_R0 (tg_alt Un) n0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat1 = sin_n 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat(0 < S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%natforall i : nat, (i <= n0)%nat -> sin_n (S i) * (a² * a² ^ i) * - a = tg_alt Un ia:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat1 = sin_n 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat(0 < S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nati:natH7:(i <= n0)%nat- (-1) ^ i / INR (fact (2 * S i + 1)) * (a² * a² ^ i) * - a = (-1) ^ i * (a ^ (2 * S i + 1) / INR (fact (2 * S i + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nati:natH7:(i <= n0)%nat- (-1) ^ i = (-1) ^ S ia:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat1 = sin_n 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat(0 < S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nati:natH7:(i <= n0)%nat- (-1) ^ i / INR (fact (2 * S i + 1)) * (a² * a² ^ i) * - a = (-1) ^ i * (a² * a² ^ i * a / INR (fact (2 * S i + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nati:natH7:(i <= n0)%nata² * a² ^ i * a = a ^ (2 * S i + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nati:natH7:(i <= n0)%nat- (-1) ^ i = (-1) ^ S ia:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat1 = sin_n 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat(0 < S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nati:natH7:(i <= n0)%nata² * a² ^ i * a = a ^ (2 * S i + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nati:natH7:(i <= n0)%nat- (-1) ^ i = (-1) ^ S ia:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat1 = sin_n 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat(0 < S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => sin_n i0 * a² ^ i0) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nati:natH7:(i <= n0)%nat- (-1) ^ i = (-1) ^ S ia:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat1 = sin_n 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat(0 < S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat1 = sin_n 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat(0 < S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n1 : nat => a ^ (2 * S n1 + 1) / INR (fact (2 * S n1 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps0eps:RH3:eps > 0H4:0 < eps / Rabs aN:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n1 - x) < eps / Rabs an0:natH5:(n0 >= N)%nat(0 < S n0)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < eps / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < epsa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => sin_n i * a² ^ i) n0 - x) < eps0eps:RH3:eps > 00 < / Rabs aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n) -> - sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n)H3:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin aH4:a - sin a <= sum_f_R0 (tg_alt Un) (2 * n)- sum_f_R0 (tg_alt Un) (2 * n) <= sin a - a <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RH2:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin a <= sum_f_R0 (tg_alt Un) (2 * n)H3:sum_f_R0 (tg_alt Un) (S (2 * n)) <= a - sin aH4:a - sin a <= sum_f_R0 (tg_alt Un) (2 * n)- sum_f_R0 (tg_alt Un) (2 * n) <= - (a - sin a) <= - sum_f_R0 (tg_alt Un) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (fun i : nat => tg_alt Un i * -1) (S (2 * n)) = sum_f_R0 (fun i : nat => sin_term a (S i)) (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Ri:natH2:(i <= S (2 * n))%nat(-1) ^ i * (a ^ (2 * S i + 1) / INR (fact (2 * S i + 1))) * -1 = -1 * (-1) ^ i * (a ^ (2 * S i + 1) / INR (fact (2 * S i + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Rsum_f_R0 (fun i : nat => tg_alt Un i * -1) (2 * n) = sum_f_R0 (fun i : nat => sin_term a (S i)) (2 * n)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Ri:natH2:(i <= 2 * n)%nattg_alt Un i * -1 = sin_term a (S i)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i0 : nat => sin_term a (S i0)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> Ri:natH2:(i <= 2 * n)%nat(-1) ^ i * (a ^ (2 * S i + 1) / INR (fact (2 * S i + 1))) * -1 = -1 * (-1) ^ i * (a ^ (2 * S i + 1) / INR (fact (2 * S i + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (2 * (n + 1))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = Init.Nat.pred (S (S (2 * n)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (S (2 * n)) = (2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (S (2 * n)) = (2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (2 * n + 1)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> R(2 * n)%nat = Init.Nat.pred (S (2 * n))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = (2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))Un:=fun n0 : nat => a ^ (2 * S n0 + 1) / INR (fact (2 * S n0 + 1)):nat -> RS (2 * n) = (2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < asum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))) -> a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))H2:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - aH3:sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))H2:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - aH3:sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))H2:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - aH3:sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))H2:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - aH3:sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))- a + (a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1))) <= - a + sin aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))H2:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - aH3:sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))H2:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - aH3:sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))sin a <= a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aH1:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))H2:sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * n + 1)) <= sin a - aH3:sin a - a <= sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1)))- a + sin a <= - a + (a + sum_f_R0 (fun i : nat => sin_term a (S i)) (Init.Nat.pred (2 * (n + 1))))a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aa = sin_term a 0a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < S (S (2 * n)))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aS (S (2 * n)) = (2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aS (S (2 * n)) = (2 * (n + 1))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < 2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < a(0 < S (2 * n))%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aS (2 * n) = (2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aa:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 0Hyp_a_pos:0 < aS (2 * n) = (2 * n + 1)%nata:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < ainversion H; [ assumption | elim Hyp_a; symmetry ; assumption ]. Qed. (**********)a:Rn:natH:0 <= aH0:a <= 4Hyp_a:a <> 00 < aforall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))((forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))) -> forall (a0 : R) (n0 : nat), -2 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natforall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (cos_term a0) (2 * n0 + 1) <= cos a0 <= sum_f_R0 (cos_term a0) (2 * (n0 + 1))(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2cos_term a0 0 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= sum_f_R0 (cos_term a0) (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2cos_term a0 0 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= cos_term a0 0 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_decreasing UnH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nata0 ^ (2 * S (S n1)) / INR (fact (2 * S (S n1))) <= a0 ^ (2 * S n1) / INR (fact (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1)) -> a0 ^ (2 * S (S n1)) / INR (fact (2 * S (S n1))) <= a0 ^ (2 * S n1) / INR (fact (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) / INR (fact (S (S (2 * S n1)))) <= a0 ^ (2 * S n1) / INR (fact (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= a0 ^ (2 * S n1)H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 * a0 * / INR (fact (S (S (2 * S n1)))) <= / INR (fact (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 * a0 * / INR (fact (S (S (2 * S n1)))) <= / INR (fact (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 < INR (fact (S (S (2 * S n1))))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (S (S (2 * S n1)))) * (a0 * a0 * / INR (fact (S (S (2 * S n1))))) <= INR (fact (S (S (2 * S n1)))) * / INR (fact (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (S (S (2 * S n1)))) * (a0 * a0 * / INR (fact (S (S (2 * S n1))))) <= INR (fact (S (S (2 * S n1)))) * / INR (fact (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 * a0 * 1 <= INR (fact (2 * S (S n1))) * / INR (fact (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 * a0 <= INR (S (S (2 * S n1))) * (INR (S (2 * S n1)) * 1)H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 * a0 <= 4 * INR n1 * INR n1 + 14 * INR n1 + 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 * a0 <= 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))12 <= 4 * INR n1 * INR n1 + 14 * INR n1 + 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 * a0 <= 4H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))4 <= 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))12 <= 4 * INR n1 * INR n1 + 14 * INR n1 + 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 * a0 <= 2²H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))4 <= 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))12 <= 4 * INR n1 * INR n1 + 14 * INR n1 + 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 <= 2H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= a0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 2H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))4 <= 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))12 <= 4 * INR n1 * INR n1 + 14 * INR n1 + 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= a0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 2H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))4 <= 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))12 <= 4 * INR n1 * INR n1 + 14 * INR n1 + 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 2H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))4 <= 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))12 <= 4 * INR n1 * INR n1 + 14 * INR n1 + 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))4 <= 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))12 <= 4 * INR n1 * INR n1 + 14 * INR n1 + 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))12 <= 4 * INR n1 * INR n1 + 14 * INR n1 + 12H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 4 * INR n1 * INR n1 + 14 * INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 4 * INR n1 * INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 14 * INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 4 * INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 14 * INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 4H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 14 * INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 14 * INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 14 * INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 14 * INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= 14H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))0 <= INR n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S n1)) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))INR (fact (2 * S (S n1))) <> 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:natH4:(2 * S (S n1))%nat = S (S (2 * S n1))a0 ^ (2 * S n1) * (a0 * a0) = a0 ^ S (S (2 * S n1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))n1:nat(2 * S (S n1))%nat = S (S (2 * S n1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv Un 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < eps0eps:RH5:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < epsn1:natH7:(n1 >= N)%natRabs (a0 ^ (2 * S n1) / INR (fact (2 * S n1)) - 0) < epsH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < eps0eps:RH5:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < epsn1:natH7:(n1 >= N)%nat(N <= 2 * S N)%natH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < eps0eps:RH5:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < epsn1:natH7:(n1 >= N)%nat(2 * S N <= 2 * S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < eps0eps:RH5:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < epsn1:natH7:(n1 >= N)%nat(N <= 2 * N)%natH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < eps0eps:RH5:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < epsn1:natH7:(n1 >= N)%nat(2 * N <= 2 * S N)%natH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < eps0eps:RH5:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < epsn1:natH7:(n1 >= N)%nat(2 * S N <= 2 * S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < eps0eps:RH5:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < epsn1:natH7:(n1 >= N)%nat(2 * N <= 2 * S N)%natH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < eps0eps:RH5:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < epsn1:natH7:(n1 >= N)%nat(2 * S N <= 2 * S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H4:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < eps0eps:RH5:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (a0 ^ n2 / INR (fact n2) - 0) < epsn1:natH7:(n1 >= N)%nat(2 * S N <= 2 * S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - cos a0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))Un_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - (let (a1, _) := exist_cos a0² in a1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:cos_in a0² xUn_cv (fun N : nat => sum_f_R0 (tg_alt Un) N) (1 - x)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n1 - x) < eps0eps:RH4:eps > 0exists N : nat, forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (tg_alt Un) n1 - (1 - x)) < epsH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n1 - x) < eps0eps:RH4:eps > 0N:natH6:forall n1 : nat, (n1 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n1 - x) < epsexists N0 : nat, forall n1 : nat, (n1 >= N0)%nat -> Rabs (sum_f_R0 (tg_alt Un) n1 - (1 - x)) < epsH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%natRabs (sum_f_R0 (tg_alt Un) n1 - (1 - x)) < epsH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%natRabs (1 - sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) (S n1) - (1 - x)) < epsH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 - sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) (S n1) = sum_f_R0 (tg_alt Un) n1H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 + - x) < epsn1:natH5:(n1 >= N)%nat(S n1 >= N)%natH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 - sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) (S n1) = sum_f_R0 (tg_alt Un) n1H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 + - x) < epsn1:natH5:(n1 >= N)%nat(N <= n1)%natH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 + - x) < epsn1:natH5:(n1 >= N)%nat(n1 <= S n1)%natH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 - sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) (S n1) = sum_f_R0 (tg_alt Un) n1H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 + - x) < epsn1:natH5:(n1 >= N)%nat(n1 <= S n1)%natH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 - sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) (S n1) = sum_f_R0 (tg_alt Un) n1H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 - sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) (S n1) = sum_f_R0 (tg_alt Un) n1H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 - (cos_n 0 * a0² ^ 0 + sum_f_R0 (fun i : nat => cos_n (S i) * a0² ^ S i) (Init.Nat.pred (S n1))) = sum_f_R0 (tg_alt Un) n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat(0 < S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 - (1 * a0² ^ 0 + sum_f_R0 (fun i : nat => cos_n (S i) * a0² ^ S i) (Init.Nat.pred (S n1))) = sum_f_R0 (tg_alt Un) n1H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 = cos_n 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat(0 < S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < epsn1:natH5:(n1 >= N)%nati:natH7:(i <= n1)%nat(-1) ^ S i / INR (fact (2 * S i)) * (a0² * a0² ^ i) * -1 = (-1) ^ i * (a0 ^ (2 * S i) / INR (fact (2 * S i)))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 = cos_n 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat(0 < S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < epsn1:natH5:(n1 >= N)%nati:natH7:(i <= n1)%nat- (-1) ^ i / INR (fact (2 * S i)) * (a0² * a0² ^ i) * -1 = (-1) ^ i * (a0 ^ (2 * S i) / INR (fact (2 * S i)))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < epsn1:natH5:(n1 >= N)%nati:natH7:(i <= n1)%nat- (-1) ^ i = (-1) ^ S iH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 = cos_n 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat(0 < S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < epsn1:natH5:(n1 >= N)%nati:natH7:(i <= n1)%nat- (-1) ^ i / INR (fact (2 * S i)) * (a0² * a0² ^ i) * -1 = (-1) ^ i * (a0² * a0² ^ i / INR (fact (2 * S i)))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < epsn1:natH5:(n1 >= N)%nati:natH7:(i <= n1)%nata0² * a0² ^ i = a0 ^ (2 * S i)H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < epsn1:natH5:(n1 >= N)%nati:natH7:(i <= n1)%nat- (-1) ^ i = (-1) ^ S iH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 = cos_n 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat(0 < S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < epsn1:natH5:(n1 >= N)%nati:natH7:(i <= n1)%nata0² * a0² ^ i = a0 ^ (2 * S i)H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < epsn1:natH5:(n1 >= N)%nati:natH7:(i <= n1)%nat- (-1) ^ i = (-1) ^ S iH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 = cos_n 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat(0 < S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i0 : nat => cos_n i0 * a0² ^ i0) n2 - x) < epsn1:natH5:(n1 >= N)%nati:natH7:(i <= n1)%nat- (-1) ^ i = (-1) ^ S iH:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 = cos_n 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat(0 < S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat1 = cos_n 0H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat(0 < S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n2 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))) -> forall (a1 : R) (n2 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n2 + 1) <= cos a1 <= cos_approx a1 (2 * (n2 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n2 : nat => a0 ^ (2 * S n2) / INR (fact (2 * S n2)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))x:Rp:forall eps0 : R, eps0 > 0 -> exists N0 : nat, forall n2 : nat, (n2 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < eps0eps:RH4:eps > 0N:natH6:forall n2 : nat, (n2 >= N)%nat -> Rabs (sum_f_R0 (fun i : nat => cos_n i * a0² ^ i) n2 - x) < epsn1:natH5:(n1 >= N)%nat(0 < S n1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0) -> - sum_f_R0 (tg_alt Un) (2 * n0) <= cos a0 - 1 <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RH3:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0)H4:sum_f_R0 (tg_alt Un) (S (2 * n0)) <= 1 - cos a0H5:1 - cos a0 <= sum_f_R0 (tg_alt Un) (2 * n0)- sum_f_R0 (tg_alt Un) (2 * n0) <= - (1 - cos a0) <= - sum_f_R0 (tg_alt Un) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Rsum_f_R0 (fun i : nat => tg_alt Un i * -1) (S (2 * n0)) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Ri:natH3:(i <= S (2 * n0))%nat(-1) ^ i * (a0 ^ (2 * S i) / INR (fact (2 * S i))) * -1 = -1 * (-1) ^ i * (a0 ^ (2 * S i) / INR (fact (2 * S i)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R- sum_f_R0 (tg_alt Un) (2 * n0) = sum_f_R0 (fun i : nat => cos_term a0 (S i)) (2 * n0)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i0 : nat => cos_term a0 (S i0)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> Ri:natH3:(i <= 2 * n0)%nat(-1) ^ i * (a0 ^ (2 * S i) / INR (fact (2 * S i))) * -1 = -1 * (-1) ^ i * (a0 ^ (2 * S i) / INR (fact (2 * S i)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (2 * (n0 + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = Init.Nat.pred (S (S (2 * n0)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (S (2 * n0)) = (2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (S (2 * n0)) = (2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (2 * n0 + 1)H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> R(2 * n0)%nat = Init.Nat.pred (S (2 * n0))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = (2 * n0 + 1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))Un:=fun n1 : nat => a0 ^ (2 * S n1) / INR (fact (2 * S n1)):nat -> RS (2 * n0) = (2 * n0 + 1)%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))) -> 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H3:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1H4:cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H3:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1H4:cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H3:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1H4:cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))- (1) + (1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1))) <= - (1) + cos a0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H3:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1H4:cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H3:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1H4:cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))cos a0 <= 1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2H2:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))H3:sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * n0 + 1)) <= cos a0 - 1H4:cos a0 - 1 <= sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1)))- (1) + cos a0 <= - (1) + (1 + sum_f_R0 (fun i : nat => cos_term a0 (S i)) (Init.Nat.pred (2 * (n0 + 1))))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 21 = cos_term a0 0H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < S (S (2 * n0)))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2S (S (2 * n0)) = (2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2S (S (2 * n0)) = (2 * (n0 + 1))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < 2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2(0 < S (2 * n0))%natH:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2S (2 * n0) = (2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:(forall (a1 : R) (n1 : nat), 0 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))) -> forall (a1 : R) (n1 : nat), -2 <= a1 -> a1 <= 2 -> cos_approx a1 (2 * n1 + 1) <= cos a1 <= cos_approx a1 (2 * (n1 + 1))a:Rn:nata0:Rn0:natH0:0 <= a0H1:a0 <= 2S (2 * n0) = (2 * n0 + 1)%nat(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))(forall (a : R) (n : nat), 0 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))) -> forall (a : R) (n : nat), -2 <= a -> a <= 2 -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hlt:0 < acos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Heq:0 = acos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > acos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Heq:0 = acos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > acos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > acos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > a0 < - a -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > a0 < - aH:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > aH2:0 < - a(forall (x : R) (n0 : nat), cos_approx x n0 = cos_approx (- x) n0) -> cos_approx a (2 * n + 1) <= cos a <= cos_approx a (2 * (n + 1))H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > aH2:0 < - aforall (x : R) (n0 : nat), cos_approx x n0 = cos_approx (- x) n0H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > a0 < - aH:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > aH2:0 < - aH3:forall (x : R) (n0 : nat), cos_approx x n0 = cos_approx (- x) n00 <= - aH:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > aH2:0 < - aH3:forall (x : R) (n0 : nat), cos_approx x n0 = cos_approx (- x) n0- a <= 2H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > aH2:0 < - aforall (x : R) (n0 : nat), cos_approx x n0 = cos_approx (- x) n0H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > a0 < - aH:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > aH2:0 < - aH3:forall (x : R) (n0 : nat), cos_approx x n0 = cos_approx (- x) n0- a <= 2H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > aH2:0 < - aforall (x : R) (n0 : nat), cos_approx x n0 = cos_approx (- x) n0H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > a0 < - aH:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > aH2:0 < - aforall (x : R) (n0 : nat), cos_approx x n0 = cos_approx (- x) n0H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > a0 < - aapply Ropp_0_gt_lt_contravar; assumption. Qed.H:forall (a0 : R) (n0 : nat), 0 <= a0 -> a0 <= 2 -> cos_approx a0 (2 * n0 + 1) <= cos a0 <= cos_approx a0 (2 * (n0 + 1))a:Rn:natH0:-2 <= aH1:a <= 2Hgt:0 > a0 < - a